70. . RETURNING FUNCTIONS

3 copy-list
(lrec #’(lambda (x f) (cons x (funcall £INN

; remove-duplicatas
(lrec #’(lambda (x f) (adjoin x (funcall £))))

; find-if, for some function fn .
(lrec #’(lambda (x £) (if (fn x) x (funcall £))))

; some, for some function fn _
(Qrec #’(lambda (x £) (or (fn x) (funcall £O0N

Figure 5.6: Functions expressed with 1rec.

case must not be a value but a function, which we can call (if we want) in order
to get a value.

Figure 5.6 shows some existing Common Lisp functions defined with 1rec.*
Calling 1rec will not always yield the most efficient implementation of a given
function. Indeed, lrec and the other recurser generators to be defined in this
chapter tend to lead one away from tail-recursive solutions. For this reason they
are best suited for use in initial versions of a program, or in parts where speed is
not critical.

5.6 Recursion on Subtrees

There is another recursi\fg pattern commonly found in Lisp programs: recursion
on subtrees. This pattern is seen in cases where you begin with a possibly nested
list, and want to recurse down both its car and its cdr.

The Lisp list is a versatile structure. Lists can represent, among other things,
sequences, sets, mappings, arrays, and trees. There are several different ways to
interpret a list as a tree. The most common is to regard the list as a binary tree
whose left branch is the car and whose right branch is the cdr. (In fact, this is
usually the internal representation of lists.) Figure 5.7 shows three examples of
lists and the trees they represent. Each internal node in such a tree corresponds
10 a dot in the dotted-pair representation of the list, 50 the tree structure may be

“In some implementations, you may have to set *print-circle# to t before these functions can
be displayed.

56 RECURSION ON SUBTREES 71

{(a . b) {abec) {ab (c a»)

Figure 5.7: Lists as trees.

easier to interpret if the lists are considered in that form:

{abc) = (a. (. (c. nil)))
(@b (ca)) = (a. (® . ((c . (4. ail)} . nil)))

Any list can be interpreted as a binary tree. Hence the distinction between pairs
of Common Lisp functions like copy-list and copy-tree. The former copies

a list as a sequence—if the list contains sublists, the sublists, being mere elements
in the sequence, are not copied:

> (setq x *{(a b)
listx (list x 1))
(A B 1)
> (eq x (car (copy-list listx)))
T

In contrast, copy-tree copies a list as a tree—sublists are subtrees, and 0 must
also be copied:
> (eq x {car (copy-tree listx)))
NIL



