352 . OBJECT-ORIENTED. LISP

()
OBNO.
(@)

Figure 25.2: Multiple paths to a superclass.

would get the value stored in d, not the one stored in ¢. This would viclate the
principle that subclasses override the default values provided by their parents.

If we want to implement the usual idea of inheritance, we should never examine
an object before one of its descendants. In this case, the propet search order would
be a, b, ¢, d. How can we ensure that the search always tries descendants first?
The simplest way is to assemble a list of all the ancestors of the original object,

 sort the list so that no object appears before one of its descendants, and then look
at each element in tarn,

This strategy is used by get-ancestors, which returns a properily ordered list

o ofanobject and its ancestors. To sort the list, get-ancestorscalls stable-sort
instead of sort, to avoid the possibility of reordering parallel ancestors. Once the
list is sorted, rget merely searches for the first object with the desired property.
(The utility some2 is a version of some for use with functions like gethash that
indicate success or failure in the second return value.)

The list of an object’s ancestors goes from most specific to least specific; if
orange is a child of citrus, which is a child of fruit, then the list will go
{orange citrus fruit).

When an object has multiple parents, their precedence goes left-to-right. That
is, if we say

(setf (géthash 'parents x) (list y z))

then y will be considered before z when we look for an inherited property. For

example, we can say that a patriotic scoundrel is a scoundrel first and a patriot
second:

> (setq scoundrel (make-hash-table)
patriot (make-hash-table)
patriotic-scoundrel (make-hash-table))

FTI £ QU e

252 OBJECTS IN PLAIN LISP 353

(defun obj (&rest parents)
(let ((obj (make-hash-table)))
(setf (gethash ’parents obj) parents)
(ancestors obj)
obj))

(defun ancestors (obj)
(or (gethash ’ancestors obj)
(setf (gethash ’ancestors obj) (get-ancestors objl))))

(defun rget (obj prop)

(some2 #’(lambda (a) (gethash prop a))
(ancestors obj)))

Figure 25.3: A function to create objects.

> (setf (gethash ’serves scoundrel) ’self
(gethash ’serves patriot) ’country
(gethash ’parents patriotic-scoundrel)

(list scoundrel patriot))

(#<Hash-Table C41C7E> #<Hash-Table C41FGE>)

> (rget patriotic-scoundrel ’serves)

SELF

T

Let’s make some improvements to this skeletal system. We could begin with a
function to create objects. This function should build a list of an object’s ancestors
at the time the object is created. The current code builds these lists when queries
are made, but there is no reason not to do it earlier. Figure 25.3 defines a function
called obj which creates a new object, storing within it a list of its ancestors. To
take advantage of stored ancestors, we also redefine rget.

* Another place for improvement is the syntax of message calls. The tell itself
is unnecessary clutter, and because it makes verbs come second, it means that our
programs can no longer be read like normal Lisp prefix expressions:

(tell (tell obj ’find~owner) ’find-owner)

We can get rid of the tel1 syntax by defining each property name as a function,
as in Figure 25.4. The optional argument meth?, if true, signals that this property
should be treated 45 a method. Otherwise it will be treated as a slot, and the value
retrieved by rget will simply be retumed. Once we have defined the name of



