88 MACROS

(if (eligible obj)
(progn (do-this)
(do-that)
obj))

Most macros for iteration splice their arguments in a similar way.

The effect of comma-at can be achieved without using backquote. The ex-
pression ‘(a ,@b c) isequalto (cons ’a {append b (list ’c))), forex-
ample. Comma-at exists only to make such expression-generating expressions
more readable.

Macro definitions (usually) generate lists. Although macro expansions could
be built with the function 1ist, backquote list-templates make the task much
easier. A macro defined with defmacro and backquote will superficially resemble
a function defined with defun. So long as you are not misled by the similarity,
backquote makes macro definitions both easier to write and easier to read,

Backquote is so often used in macro definitions that people sometimes think
of backquote as part of defmacro. The last thing to remember about backquote
is that it has a life of its own, separate from its role in macros. You can use
‘backquote anywhere sequences need to be built:

(defun greet (name)
‘(helloc ,name))

7.3 Defining Simple Macros

In programming, the best way to learn is often to begin experimenting as soon
as possible. A full theoretical understanding can come later. Accordingly, this
section presents a way to start writing macros immediately. It works only for a
narrow range of cases, but where applicable it can be applied quite mechanically.
(If you’ve written macros before, you may want to skip this section.)

As an example, we consider how to write a variant of the the built-in Common
Lisp function member. By default member uses eql to test for equality. If you
want to test for membership using eq, you have to say so explicitly:

-

(member x choices :test #'eq)

If we did this a lot, we might want to write a variant of member which always
used eq. Some earlier djalects of Lisp had such a function, called memg:

{memq x choicas)

Ordinarily one would define memq as an inline function, but for the sake of example

73 DEFINING SIMPLE MACROS 89

call: (memg x choices)

L

expansion: = (member x choices :test #’eq)

Figure 7.2: Diagram used in writing memg.

The method: Begin with a typical call to the macro you want to define. Write
it down on a piece of paper, and below it write down the expression into which it
ought to expand. Figure 7.2 shows two such expressions. From the macro call,
construct the parameter list for your macro, making up some parameter name for

each of the arguments. In this case there are two arguments, so we’ll have two
parameters, and call them obj and 1st:

(defmacrc memg (obj 1st)

Now go back to the two expressions you wrote down. For each argument in the
macro call, draw a line connecting it with the place it appears in the expansion
below. In Figure 7.2 there are two parallel lines. ‘To write the body of the macro,
turn your attention to the expansion. Start the body with a backquote. Now, begin
reading the expansion expression by expression. Wherever you find a parenthesis
that isn’t part of an argument in the macro call, put one in the macro definition,

So following the backquote will be a left parenthesis. For each expression in the
expansion

L. If there is no line connecting it with the macro call, then write down the
expression itself,

2. If there is a connection to one of the arguments in the macro call, write
down the symbol which occurs in the corresponding position in the macro
parameter list, preceded by a comma,

There is no connection to the first element, member, s0 we use member itself:

(defmacro memg (obj 1st)
‘ (member

However, x has a line leading to the first argument in the source expression, so
we use in the macro body the first parameter, with a comma:

(defmacro memq (obj 1st)
‘ (member ,obj



