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Preface

This book is intended for anyone who wants to become a better Lisp programmer.
It assumes some familiarity with Lisp, but not necessarily extensive programming
experience. The first few chapters contain a fair amount of review. I hope that
these sections will be interesting to more experienced Lisp programmers as well,
because they present familiar subjects in a new light.

It’s difficult to convey the essence of a programming language in one sentence,
but John Foderaro has come close:

Lisp is a programmable programming language.

There is more to Lisp than this, but the ability to bend Lisp to one’s will is a
large part of what distinguishes a Lisp expert from a novice. As well as writing
their programs down toward the language, experienced Lisp programmers build
the language up toward their programs. This book teaches how to program in the
bottom-up style for which Lisp is inherently well-suited.

Bottom-up Design

Bottom-up design is becoming more important as software grows in complexity.
Programs today may have to meet specifications which are extremely complex,
or even open-ended. Under such circumstances, the traditional top-down method
sometimes breaks down. In its place there has evolved a style of programming
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vi PREFACE

quite different from what is currently taught in most computer science courses:
a bottom-up style in which a program is written as a series of layers, each one
acting as a sort of programming language for the one above. X Windows and TEX
are examples of programs written in this style.

The theme of this book is twofold: that Lisp is a natural language for programs
written in the bottom-up style, and that the bottom-up style is a natural way to
write Lisp programs. On Lisp will thus be of interest to two classes of readers.
For people interested in writing extensible programs, this book will show what
you can do if you have the right language. For Lisp programmers, this book offers
a practical explanation of how to use Lisp to its best advantage.

The title is intended to stress the importance of bottom-up programming in
Lisp. Instead of just writing your program in Lisp, you can write your own
language on Lisp, and write your program in that.

It is possible to write programs bottom-up in any language, but Lisp is the
most natural vehicle for this style of programming. In Lisp, bottom-up design is
not a special technique reserved for unusually large or difficult programs. Any
substantial program will be written partly in this style. Lisp was meant from the
start to be an extensible language. The language itself is mostly a collection of
Lisp functions, no different from the ones you define yourself. What’s more, Lisp
functions can be expressed as lists, which are Lisp data structures. This means
you can write Lisp functions which generate Lisp code.

A good Lisp programmermust know how to take advantage of this possibility.
The usual way to do so is by defining a kind of operator called a macro. Mastering
macros is one of the most important steps in moving from writing correct Lisp
programs to writing beautiful ones. Introductory Lisp books have room for no
more than a quick overviewofmacros: an explanation ofwhatmacros are, together
with a few examples which hint at the strange and wonderful things you can do
with them. Those strange and wonderful things will receive special attention here.
One of the aims of this book is to collect in one place all that people have till now
had to learn from experience about macros.

Understandably, introductory Lisp books do not emphasize the differences
between Lisp and other languages. They have to get their message across to
students who have, for the most part, been schooled to think of programs in Pascal
terms. It would only confuse matters to explain that, while defun looks like a
procedure definition, it is actually a program-writing program that generates code
which builds a functional object and indexes it under the symbol given as the first
argument.

One of the purposes of this book is to explain what makes Lisp different from
other languages. When I began, I knew that, all other things being equal, I would
much rather write programs in Lisp than in C or Pascal or Fortran. I knew also that
this was not merely a question of taste. But I realized that if I was actually going
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to claim that Lisp was in some ways a better language, I had better be prepared to
explain why.

When someone asked Louis Armstrong what jazz was, he replied “If you have
to ask what jazz is, you’ll never know.” But he did answer the question in a way:
he showed people what jazz was. That’s one way to explain the power of Lisp—to
demonstrate techniques that would be difficult or impossible in other languages.
Most books on programming—even books on Lisp programming—deal with the
kinds of programs you could write in any language. On Lisp deals mostly with
the kinds of programs you could only write in Lisp. Extensibility, bottom-up
programming, interactive development, source code transformation, embedded
languages—this is where Lisp shows to advantage.

In principle, of course, any Turing-equivalent programming language can do
the same things as any other. But that kind of power is not what programming
languages are about. In principle, anything you can do with a programming
language you can do with a Turing machine; in practice, programming a Turing
machine is not worth the trouble.

So when I say that this book is about how to do things that are impossible
in other languages, I don’t mean “impossible” in the mathematical sense, but in
the sense that matters for programming languages. That is, if you had to write
some of the programs in this book in C, you might as well do it by writing a Lisp
compiler in C first. Embedding Prolog in C, for example—can you imagine the
amount of work that would take? Chapter 24 shows how to do it in 180 lines of
Lisp.

I hoped to do more than simply demonstrate the power of Lisp, though. I also
wanted to explainwhyLisp is different. This turns out to be a subtle question—too
subtle to be answered with phrases like “symbolic computation.” What I have
learned so far, I have tried to explain as clearly as I can.

Plan of the Book

Since functions are the foundation of Lisp programs, the book begins with sev-
eral chapters on functions. Chapter 2 explains what Lisp functions are and the
possibilities they offer. Chapter 3 then discusses the advantages of functional
programming, the dominant style in Lisp programs. Chapter 4 shows how to use
functions to extend Lisp. Then Chapter 5 suggests the new kinds of abstractions
we can define with functions that return other functions. Finally, Chapter 6 shows
how to use functions in place of traditional data structures.

The remainder of the book deals more with macros than functions. Macros
receive more attention partly because there is more to say about them, and partly
because they have not till now been adequately described in print. Chapters 7–10
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form a complete tutorial on macro technique. By the end of it you will knowmost
of what an experienced Lisp programmer knows about macros: how they work;
how to define, test, and debug them; when to use macros and when not; the major
types of macros; how to write programs which generate macro expansions; how
macro style differs from Lisp style in general; and how to detect and cure each of
the unique problems that afflict macros.

Following this tutorial, Chapters 11–18 show some of the powerful abstrac-
tions you can build with macros. Chapter 11 shows how to write the classic
macros—those which create context, or implement loops or conditionals. Chap-
ter 12 explains the role of macros in operations on generalized variables. Chap-
ter 13 shows how macros can make programs run faster by shifting computation
to compile-time. Chapter 14 introduces anaphoric macros, which allow you to
use pronouns in your programs. Chapter 15 shows how macros provide a more
convenient interface to the function-builders defined in Chapter 5. Chapter 16
shows how to use macro-defining macros to make Lisp write your programs for
you. Chapter 17 discusses read-macros, and Chapter 18, macros for destructuring.

With Chapter 19 begins the fourth part of the book, devoted to embedded
languages. Chapter 19 introduces the subject by showing the same program, a
program to answer queries on a database, implemented first by an interpreter
and then as a true embedded language. Chapter 20 shows how to introduce
into Common Lisp programs the notion of a continuation, an object representing
the remainder of a computation. Continuations are a very powerful tool, and
can be used to implement both multiple processes and nondeterministic choice.
Embedding these control structures in Lisp is discussed in Chapters 21 and 22,
respectively. Nondeterminism, which allows you to write programs as if they
had foresight, sounds like an abstraction of unusual power. Chapters 23 and 24
present two embedded languages which show that nondeterminism lives up to its
promise: a complete ATN parser and an embedded Prolog which combined total
about 200 lines of code.◦

The fact that these programs are shortmeans nothing in itself. If you resorted to
writing incomprehensible code, there’s no telling what you could do in 200 lines.
The point is, these programs are not short because they depend on programming
tricks, but because they’re written using Lisp the way it’s meant to be used. The
point of Chapters 23 and 24 is not how to implement ATNs in one page of code
or Prolog in two, but to show that these programs, when given their most natural
Lisp implementation, simply are that short. The embedded languages in the latter
chapters provide a proof by example of the twin points with which I began: that
Lisp is a natural language for bottom-up design, and that bottom-up design is a
natural way to use Lisp.

The book concludes with a discussion of object-oriented programming, and
particularly CLOS, the Common Lisp Object System. By saving this topic till
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last, we see more clearly the way in which object-oriented programming is an
extension of ideas already present in Lisp. It is one of the many abstractions that
can be built on Lisp.

A chapter’s worth of notes begins on page 387. The notes contain references,
additional or alternative code, or descriptions of aspects of Lisp not directly related
to the point at hand. Notes are indicated by a small circle in the outside margin,
like this. There is also an Appendix (page 381) on packages. ◦

Just as a tour of New York could be a tour of most of the world’s cultures, a
study of Lisp as the programmable programming language draws in most of Lisp
technique. Most of the techniques described here are generally known in the Lisp
community, but many have not till now been written down anywhere. And some
issues, such as the proper role of macros or the nature of variable capture, are only
vaguely understood even by many experienced Lisp programmers.

Examples

Lisp is a family of languages. Since Common Lisp promises to remain a widely
used dialect, most of the examples in this book are in CommonLisp. The language
was originally defined in 1984 by the publication of Guy Steele’s Common Lisp:
the Language (CLTL1). This definition was superseded in 1990 by the publication
of the second edition (CLTL2), which will in turn yield place to the forthcoming ◦
ANSI standard.

This book contains hundreds of examples, ranging from single expressions to
a working Prolog implementation. The code in this book has, wherever possible,
been written to work in any version of Common Lisp. Those few examples which
need features not found in CLTL1 implementations are explicitly identified in the
text. Later chapters contain some examples in Scheme. These too are clearly
identified.

The code is available by anonymous FTP from endor.harvard.edu, where
it’s in the directory pub/onlisp. Questions and comments can be sent to
onlisp@das.harvard.edu.
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1

The Extensible Language

Not long ago, if you asked what Lisp was for, many people would have answered
“for artificial intelligence.” In fact, the association between Lisp and AI is just an
accident of history. Lisp was invented by John McCarthy, who also invented the
term “artificial intelligence.” His students and colleagues wrote their programs in
Lisp, and so it began to be spoken of as an AI language. This line was taken up
and repeated so often during the brief AI boom in the 1980s that it became almost
an institution.

Fortunately, word has begun to spread that AI is not what Lisp is all about.
Recent advances in hardware and software have made Lisp commercially viable:
it is now used in Gnu Emacs, the best Unix text-editor; Autocad, the industry stan-
dard desktop CAD program; and Interleaf, a leading high-end publishing program.
The way Lisp is used in these programs has nothing whatever to do with AI.

If Lisp is not the language of AI, what is it? Instead of judging Lisp by the
company it keeps, let’s look at the language itself. What can you do in Lisp that
you can’t do in other languages? One of the most distinctive qualities of Lisp is
the way it can be tailored to suit the program being written in it. Lisp itself is a
Lisp program, and Lisp programs can be expressed as lists, which are Lisp data
structures. Together, these two principles mean that any user can add operators to
Lisp which are indistinguishable from the ones that come built-in.

1.1 Design by Evolution

Because Lisp gives you the freedom to define your own operators, you can mold
it into just the language you need. If you’re writing a text-editor, you can turn

1
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Lisp into a language for writing text-editors. If you’re writing a CAD program,
you can turn Lisp into a language for writing CAD programs. And if you’re not
sure yet what kind of program you’re writing, it’s a safe bet to write it in Lisp.
Whatever kind of program yours turns out to be, Lisp will, during the writing of
it, have evolved into a language for writing that kind of program.

If you’re not sure yet what kind of program you’re writing? To some ears
that sentence has an odd ring to it. It is in jarring contrast with a certain model
of doing things wherein you (1) carefully plan what you’re going to do, and then
(2) do it. According to this model, if Lisp encourages you to start writing your
program before you’ve decided how it should work, it merely encourages sloppy
thinking.

Well, it just ain’t so. The plan-and-implement method may have been a good
way of building dams or launching invasions, but experience has not shown it to
be as good a way of writing programs. Why? Perhaps it’s because computers
are so exacting. Perhaps there is more variation between programs than there
is between dams or invasions. Or perhaps the old methods don’t work because
old concepts of redundancy have no analogue in software development: if a dam
contains 30% too much concrete, that’s a margin for error, but if a program does
30% too much work, that is an error.

It may be difficult to say why the old method fails, but that it does fail, anyone
can see. When is software delivered on time? Experienced programmers know
that no matter how carefully you plan a program, when you write it the plans will
turn out to be imperfect in some way. Sometimes the plans will be hopelessly
wrong. Yet few of the victims of the plan-and-implement method question its
basic soundness. Instead they blame human failings: if only the plans had been
made with more foresight, all this trouble could have been avoided. Since even
the very best programmers run into problems when they turn to implementation,
perhaps it’s too much to hope that people will ever have that much foresight.
Perhaps the plan-and-implementmethod could be replaced with another approach
which better suits our limitations.

We can approach programming in a different way, if we have the right tools.
Why do we plan before implementing? The big danger in plunging right into
a project is the possibility that we will paint ourselves into a corner. If we had
a more flexible language, could this worry be lessened? We do, and it is. The
flexibility of Lisp has spawned a whole new style of programming. In Lisp, you
can do much of your planning as you write the program.

Why wait for hindsight? As Montaigne found, nothing clarifies your ideas
like trying to write them down. Once you’re freed from the worry that you’ll paint
yourself into a corner, you can take full advantage of this possibility. The ability
to plan programs as you write them has two momentous consequences: programs
take less time to write, because when you plan and write at the same time, you
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have a real program to focus your attention; and they turn out better, because the
final design is always a product of evolution. So long as you maintain a certain
discipline while searching for your program’s destiny—so long as you always
rewrite mistaken parts as soon as it becomes clear that they’re mistaken—the final
product will be a program more elegant than if you had spent weeks planning it
beforehand.

Lisp’s versatility makes this kind of programming a practical alternative.
Indeed, the greatest danger of Lisp is that it may spoil you. Once you’ve used
Lisp for a while, you may become so sensitive to the fit between language and
application that you won’t be able to go back to another language without always
feeling that it doesn’t give you quite the flexibility you need.

1.2 Programming Bottom-Up

It’s a long-standing principle of programming style that the functional elements of
a program should not be too large. If some component of a program grows beyond
the stage where it’s readily comprehensible, it becomes a mass of complexity
which conceals errors as easily as a big city conceals fugitives. Such software
will be hard to read, hard to test, and hard to debug.

In accordance with this principle, a large programmust be divided into pieces,
and the larger the program, the more it must be divided. How do you divide
a program? The traditional approach is called top-down design: you say “the
purpose of the program is to do these seven things, so I divide it into seven major
subroutines. The first subroutine has to do these four things, so it in turn will
have four of its own subroutines,” and so on. This process continues until the
whole program has the right level of granularity—each part large enough to do
something substantial, but small enough to be understood as a single unit.

Experienced Lisp programmers divide up their programs differently. As well
as top-down design, they follow a principle which could be called bottom-up
design—changing the language to suit the problem. In Lisp, you don’t just write
your program down toward the language, you also build the language up toward
your program. As you’re writing a program you may think “I wish Lisp had such-
and-such an operator.” So you go and write it. Afterward you realize that using
the new operator would simplify the design of another part of the program, and so
on. Language and program evolve together. Like the border between two warring
states, the boundary between language and program is drawn and redrawn, until
eventually it comes to rest along the mountains and rivers, the natural frontiers
of your problem. In the end your program will look as if the language had been
designed for it. And when language and program fit one another well, you end up
with code which is clear, small, and efficient.
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It’s worth emphasizing that bottom-up design doesn’t mean just writing the
same program in a different order. When you work bottom-up, you usually end
up with a different program. Instead of a single, monolithic program, you will get
a larger language with more abstract operators, and a smaller program written in
it. Instead of a lintel, you’ll get an arch.

In typical code, once you abstract out the parts which are merely bookkeeping,
what’s left is much shorter; the higher you build up the language, the less distance
you will have to travel from the top down to it. This brings several advantages:

1. By making the language do more of the work, bottom-up design yields
programs which are smaller and more agile. A shorter program doesn’t
have to be divided into so many components, and fewer components means
programs which are easier to read or modify. Fewer components also
means fewer connections between components, and thus less chance for
errors there. As industrial designers strive to reduce the number of moving
parts in a machine, experienced Lisp programmers use bottom-up design to
reduce the size and complexity of their programs.

2. Bottom-up design promotes code re-use. When you write two or more
programs, many of the utilities you wrote for the first program will also
be useful in the succeeding ones. Once you’ve acquired a large substrate
of utilities, writing a new program can take only a fraction of the effort it
would require if you had to start with raw Lisp.

3. Bottom-up design makes programs easier to read. An instance of this type
of abstraction asks the reader to understand a general-purpose operator; an
instance of functional abstraction asks the reader to understand a special-
purpose subroutine.1

4. Because it causes you always to be on the lookout for patterns in your
code, working bottom-up helps to clarify your ideas about the design of
your program. If two distant components of a program are similar in form,
you’ll be led to notice the similarity and perhaps to redesign the program in
a simpler way.

Bottom-up design is possible to a certain degree in languages other than Lisp.
Whenever you see library functions, bottom-up design is happening. However,
Lisp gives you much broader powers in this department, and augmenting the
language plays a proportionately larger role in Lisp style—so much so that Lisp
is not just a different language, but a whole different way of programming.

1“But no one can read the program without understanding all your new utilities.” To see why such
statements are usually mistaken, see Section 4.8.
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It’s true that this style of development is better suited to programswhich can be
written by small groups. However, at the same time, it extends the limits of what
can be done by a small group. In The Mythical Man-Month, Frederick Brooks ◦
proposed that the productivity of a group of programmers does not grow linearly
with its size. As the size of the group increases, the productivity of individual
programmers goes down. The experience of Lisp programming suggests a more
cheerfulway to phrase this law: as the size of the group decreases, the productivity
of individual programmers goes up. A small group wins, relatively speaking,
simply because it’s smaller. When a small group also takes advantage of the
techniques that Lisp makes possible, it can win outright.

1.3 Extensible Software

The Lisp style of programming is one that has grown in importance as software
has grown in complexity. Sophisticated users now demand so much from software
that we can’t possibly anticipate all their needs. They themselves can’t anticipate
all their needs. But if we can’t give them software which does everything they
want right out of the box, we can give them software which is extensible. We
transform our software from a mere program into a programming language, and
advanced users can build upon it the extra features that they need.

Bottom-up design leads naturally to extensible programs. The simplest
bottom-up programs consist of two layers: language and program. Complex
programs may be written as a series of layers, each one acting as a programming
language for the one above. If this philosophy is carried all the way up to the
topmost layer, that layer becomes a programming language for the user. Such
a program, where extensibility permeates every level, is likely to make a much
better programming language than a system which was written as a traditional
black box, and then made extensible as an afterthought.

X Windows and TEX are early examples of programs based on this principle.
In the 1980s better hardware made possible a new generation of programs which
had Lisp as their extension language. The first was Gnu Emacs, the popular
Unix text-editor. Later came Autocad, the first large-scale commercial product to
provide Lisp as an extension language. In 1991 Interleaf released a new version
of its software that not only had Lisp as an extension language, but was largely
implemented in Lisp.

Lisp is an especially good language for writing extensible programs because
it is itself an extensible program. If you write your Lisp programs so as to pass
this extensibility on to the user, you effectively get an extension language for free.
And the difference between extending a Lisp program in Lisp, and doing the same
thing in a traditional language, is like the difference between meeting someone in
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person and conversing by letters. In a program which is made extensible simply
by providing access to outside programs, the best we can hope for is two black
boxes communicating with one another through some predefined channel. In
Lisp, extensions can have direct access to the entire underlying program. This is
not to say that you have to give users access to every part of your program—just
that you now have a choice about whether to give them access or not.

When this degree of access is combined with an interactive environment, you
have extensibility at its best. Any program that you might use as a foundation for
extensions of your own is likely to be fairly big—too big, probably, for you to have
a complete mental picture of it. What happens when you’re unsure of something?
If the original program is written in Lisp, you can probe it interactively: you can
inspect its data structures; you can call its functions; you may even be able to look
at the original source code. This kind of feedback allows you to program with
a high degree of confidence—to write more ambitious extensions, and to write
them faster. An interactive environment always makes programming easier, but it
is nowhere more valuable than when one is writing extensions.

An extensible program is a double-edged sword, but recent experience has
shown that users prefer a double-edged sword to a blunt one. Extensible programs
seem to prevail, whatever their inherent dangers.

1.4 Extending Lisp

There are two ways to add new operators to Lisp: functions and macros. In Lisp,
functions you define have the same status as the built-in ones. If you want a new
variant of mapcar, you can define one yourself and use it just as you would use
mapcar. For example, if you want a list of the values returned by some function
when it is applied to all the integers from 1 to 10, you could create a new list and
pass it to mapcar:

(mapcar fn
(do* ((x 1 (1+ x))

(result (list x) (push x result)))
((= x 10) (nreverse result))))

but this approach is both ugly and inefficient.2 Instead you could define a new
mapping function map1-n (see page 54), and then call it as follows:

(map1-n fn 10)

2You could write this more elegantly with the new Common Lisp series macros, but that only
proves the same point, because these macros are an extension to Lisp themselves.
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Defining functions is comparatively straightforward. Macros provide a more
general, but less well-understood, means of defining new operators. Macros are
programs that write programs. This statement has far-reaching implications, and
exploring them is one of the main purposes of this book.

The thoughtful use of macros leads to programs which are marvels of clarity
and elegance. These gems are not to be had for nothing. Eventually macros will
seem themost natural thing in theworld, but they can be hard to understand at first.
Partly this is because they are more general than functions, so there is more to keep
in mind when writing them. But the main reason macros are hard to understand
is that they’re foreign. No other language has anything like Lisp macros. Thus
learning about macros may entail unlearning preconceptions inadvertently picked
up from other languages. Foremost among these is the notion of a program as
something afflicted by rigor mortis. Why should data structures be fluid and
changeable, but programs not? In Lisp, programs are data, but the implications
of this fact take a while to sink in.

If it takes some time to get used to macros, it is well worth the effort. Even in
such mundane uses as iteration, macros can make programs significantly smaller
and cleaner. Suppose a program must iterate over some body of code for x from
a to b. The built-in Lisp do is meant for more general cases. For simple iteration
it does not yield the most readable code:

(do ((x a (+ 1 x)))
((> x b))

(print x))

Instead, suppose we could just say:

(for (x a b)
(print x))

Macros make this possible. With six lines of code (see page 154) we can add for
to the language, just as if it had been there from the start. And as later chapters
will show, writing for is only the beginning of what you can do with macros.

You’re not limited to extending Lisp one function or macro at a time. If you
need to, you can build a whole language on top of Lisp, and write your programs
in that. Lisp is an excellent language for writing compilers and interpreters, but
it offers another way of defining a new language which is often more elegant and
certainly much less work: to define the new language as a modification of Lisp.
Then the parts of Lisp which can appear unchanged in the new language (e.g.
arithmetic or I/O) can be used as is, and you only have to implement the parts
which are different (e.g. control structure). A language implemented in this way
is called an embedded language.
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Embedded languages are a natural outgrowth of bottom-up programming.
Common Lisp includes several already. The most famous of them, CLOS, is
discussed in the last chapter. But you can define embedded languages of your
own, too. You can have the language which suits your program, even if it ends up
looking quite different from Lisp.

1.5 Why Lisp (or When)

These new possibilities do not stem from a singlemagic ingredient. In this respect,
Lisp is like an arch. Which of the wedge-shaped stones (voussoirs) is the one
that holds up the arch? The question itself is mistaken; they all do. Like an arch,
Lisp is a collection of interlocking features. We can list some of these features—
dynamic storage allocation and garbage collection, runtime typing, functions as
objects, a built-in parser which generates lists, a compiler which accepts programs
expressed as lists, an interactive environment, and so on—but the power of Lisp
cannot be traced to any single one of them. It is the combination which makes
Lisp programming what it is.

Over the past twenty years, the way people program has changed. Many of
these changes—interactive environments, dynamic linking, even object-oriented
programming—have been piecemeal attempts to give other languages some of
the flexibility of Lisp. The metaphor of the arch suggests how well they have
succeeded.

It is widely known that Lisp and Fortran are the two oldest languages still in
use. What is perhaps more significant is that they represent opposite poles in the
philosophy of language design. Fortran was invented as a step up from assembly
language. Lisp was invented as a language for expressing algorithms. Such
different intentions yielded vastly different languages. Fortran makes life easy for
the compiler writer; Lisp makes life easy for the programmer. Most programming
languages since have fallen somewhere between the two poles. Fortran and Lisp
have themselves moved closer to the center. Fortran now looks more like Algol,
and Lisp has given up some of the wasteful habits of its youth.

The original Fortran and Lisp defined a sort of battlefield. On one side the
battle cry is “Efficiency! (And besides, it would be too hard to implement.)” On
the other side, the battle cry is “Abstraction! (And anyway, this isn’t production
software.)” As the gods determined from afar the outcomes of battles among the
ancient Greeks, the outcome of this battle is being determined by hardware. Every
year, things look better for Lisp. The arguments against Lisp are now starting to
sound very much like the arguments that assembly language programmers gave
against high-level languages in the early 1970s. The question is now becoming
notWhy Lisp?, butWhen?
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Functions

Functions are the building-blocks of Lisp programs. They are also the building-
blocks of Lisp. In most languages the + operator is something quite different
from user-defined functions. But Lisp has a single model, function application, to
describe all the computation done by a program. The Lisp + operator is a function,
just like the ones you can define yourself.

In fact, except for a small number of operators called special forms, the core
of Lisp is a collection of Lisp functions. What’s to stop you from adding to this
collection? Nothing at all: if you think of something you wish Lisp could do, you
can write it yourself, and your new function will be treated just like the built-in
ones.

This fact has important consequences for the programmer. It means that any
new function could be considered either as an addition to Lisp, or as part of a
specific application. Typically, an experienced Lisp programmer will write some
of each, adjusting the boundary between language and application until the two
fit one another perfectly. This book is about how to achieve a good fit between
language and application. Since everything we do toward this end ultimately
depends on functions, functions are the natural place to begin.

2.1 Functions as Data

Two things make Lisp functions different. One, mentioned above, is that Lisp
itself is a collection of functions. Thismeans thatwe can add to Lisp newoperators
of our own. Another important thing to know about functions is that they are Lisp
objects.

9
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Lisp offers most of the data types one finds in other languages. We get
integers and floating-point numbers, strings, arrays, structures, and so on. But
Lisp supports one data type which may at first seem surprising: the function.
Nearly all programming languages provide some form of function or procedure.
What does it mean to say that Lisp provides them as a data type? It means that in
Lisp we can do with functions all the things we expect to do with more familiar
data types, like integers: create new ones at runtime, store them in variables and in
structures, pass them as arguments to other functions, and return them as results.

The ability to create and return functions at runtime is particularly useful.
This might sound at first like a dubious sort of advantage, like the self-modifying
machine language programs one can run on some computers. But creating new
functions at runtime turns out to be a routinely used Lisp programming technique.

2.2 Defining Functions

Most people first learn how to make functions with defun. The following expres-
sion defines a function called double which returns twice its argument.

> (defun double (x) (* x 2))
DOUBLE

Having fed this to Lisp, we can call double in other functions, or from the
toplevel:

> (double 1)
2

A file of Lisp code usually consists mainly of such defuns, and so resembles a
file of procedure definitions in a language like C or Pascal. But something quite
different is going on. Those defuns are not just procedure definitions, they’re
Lisp calls. This distinction will become clearer when we see what’s going on
underneath defun.

Functions are objects in their own right. What defun really does is build one,
and store it under the name given as the first argument. So as well as calling
double, we can get hold of the function which implements it. The usual way to
do so is by using the #’ (sharp-quote) operator. This operator can be understood
as mapping names to actual function objects. By affixing it to the name of double

> #’double
#<Interpreted-Function C66ACE>

we get the actual object created by the definition above. Though its printed
representation will vary from implementation to implementation, a Common Lisp
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function is a first-class object, with all the same rights as more familiar objects
like numbers and strings. So we can pass this function as an argument, return it,
store it in a data structure, and so on:

> (eq #’double (car (list #’double)))
T

We don’t even need defun to make functions. Like most Lisp objects, we
can refer to them literally. When we want to refer to an integer, we just use the
integer itself. To represent a string, we use a series of characters surrounded by
double-quotes. To represent a function, we use what’s called a lambda-expression.
A lambda-expression is a list with three parts: the symbol lambda, a parameter
list, and a body of zero or more expressions. This lambda-expression refers to a
function equivalent to double:

(lambda (x) (* x 2))

It describes a function which takes one argument x, and returns 2x.
A lambda-expression can also be considered as the name of a function. If

double is a proper name, like “Michelangelo,” then (lambda (x) (* x 2)) is
a definite description, like “the man who painted the ceiling of the Sistine Chapel.”
By putting a sharp-quote before a lambda-expression, we get the corresponding
function:

> #’(lambda (x) (* x 2))
#<Interpreted-Function C674CE>

This function behaves exactly like double, but the two are distinct objects.
In a function call, the name of the function appears first, followed by the

arguments:

> (double 3)
6

Since lambda-expressions are also names of functions, they can also appear first
in function calls:

> ((lambda (x) (* x 2)) 3)
6

In CommonLisp, we can have a function named double and a variable named
double at the same time.
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> (setq double 2)
2
> (double double)
4

When a name occurs first in a function call, or is preceded by a sharp-quote, it is
taken to refer to a function. Otherwise it is treated as a variable name.

It is therefore said that Common Lisp has distinct name-spaces for variables
and functions. We can have a variable called foo and a function called foo, and
they need not be identical. This situation can be confusing, and leads to a certain
amount of ugliness in code, but it is something that Common Lisp programmers
have to live with.

If necessary, Common Lisp provides two functions which map symbols to the
values, or functions, that they represent. The function symbol-value takes a
symbol and returns the value of the corresponding special variable:

> (symbol-value ’double)
2

while symbol-function does the same for a globally defined function:

> (symbol-function ’double)
#<Interpreted-Function C66ACE>

Note that, since functions are ordinary data objects, a variable could have a
function as its value:

> (setq x #’append)
#<Compiled-Function 46B4BE>
> (eq (symbol-value ’x) (symbol-function ’append))
T

Beneath the surface, defun is setting the symbol-function of its first argu-
ment to a function constructed from the remaining arguments. The following two
expressions do approximately the same thing:

(defun double (x) (* x 2))

(setf (symbol-function ’double)
#’(lambda (x) (* x 2)))

So defun has the same effect as procedure definition in other languages—to
associate a name with a piece of code. But the underlying mechanism is not the
same. We don’t need defun to make functions, and functions don’t have to be
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stored away as the value of some symbol. Underlying defun, which resembles
procedure definition in any other language, is a more generalmechanism: building
a function and associating it with a certain name are two separate operations.
When we don’t need the full generality of Lisp’s notion of a function, defun
makes function definition as simple as in more restrictive languages.

2.3 Functional Arguments

Having functions as data objects means, among other things, that we can pass
them as arguments to other functions. This possibility is partly responsible for the
importance of bottom-up programming in Lisp.

A language which allows functions as data objects must also provide some
way of calling them. In Lisp, this function is apply. Generally, we call apply
with two arguments: a function, and a list of arguments for it. The following four
expressions all have the same effect:

(+ 1 2)

(apply #’+ ’(1 2))

(apply (symbol-function ’+) ’(1 2))

(apply #’(lambda (x y) (+ x y)) ’(1 2))

In Common Lisp, apply can take any number of arguments, and the function
given first will be applied to the list made by consing the rest of the arguments
onto the list given last. So the expression

(apply #’+ 1 ’(2))

is equivalent to the preceding four. If it is inconvenient to give the arguments as
a list, we can use funcall, which differs from apply only in this respect. This
expression

(funcall #’+ 1 2)

has the same effect as those above.
Many built-in Common Lisp functions take functional arguments. Among the

most frequently used are the mapping functions. For example, mapcar takes two
or more arguments, a function and one or more lists (one for each parameter of
the function), and applies the function successively to elements of each list:
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> (mapcar #’(lambda (x) (+ x 10))
’(1 2 3))

(11 12 13)
> (mapcar #’+

’(1 2 3)
’(10 100 1000))

(11 102 1003)

Lisp programs frequently want to do something to each element of a list and get
back a list of results. The first example above illustrates the conventional way to
do this: make a function which does what you want done, and mapcar it over the
list.

Already we see how convenient it is to be able to treat functions as data. In
many languages, even if we could pass a function as an argument to something like
mapcar, it would still have to be a function defined in some source file beforehand.
If just one piece of code wanted to add 10 to each element of a list, we would have
to define a function, called plus ten or some such, just for this one use. With
lambda-expressions, we can refer to functions directly.

One of the big differences between Common Lisp and the dialects which
preceded it are the large number of built-in functions that take functional argu-
ments. Two of the most commonly used, after the ubiquitous mapcar, are sort
and remove-if. The former is a general-purpose sorting function. It takes a list
and a predicate, and returns a list sorted by passing each pair of elements to the
predicate.

> (sort ’(1 4 2 5 6 7 3) #’<)
(1 2 3 4 5 6 7)

To remember how sort works, it helps to remember that if you sort a list with no
duplicates by <, and then apply < to the resulting list, it will return true.

If remove-if weren’t included in Common Lisp, it might be the first utility
you would write. It takes a function and a list, and returns all the elements of the
list for which the function returns false.

> (remove-if #’evenp ’(1 2 3 4 5 6 7))
(1 3 5 7)

As an example of a function which takes functional arguments, here is a
definition of a limited version of remove-if:
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(defun our-remove-if (fn lst)
(if (null lst)

nil
(if (funcall fn (car lst))

(our-remove-if fn (cdr lst))
(cons (car lst) (our-remove-if fn (cdr lst))))))

Note that within this definition fn is not sharp-quoted. Since functions are data
objects, a variable can have a function as its regular value. That’s what’s happening
here. Sharp-quote is only for referring to the function named by a symbol—usually
one globally defined as such with defun.

As Chapter 4 will show, writing new utilities which take functional arguments
is an important element of bottom-up programming. Common Lisp has so many
utilities built-in that the one you need may exist already. But whether you use
built-ins like sort, or write your own utilities, the principle is the same. Instead
of wiring in functionality, pass a functional argument.

2.4 Functions as Properties

The fact that functions are Lisp objects also allows us to write programswhich can
be extended to deal with new cases on the fly. Suppose we want to write a function
which takes a type of animal and behaves appropriately. In most languages, the
way to do this would be with a case statement, and we can do it this way in Lisp
as well:

(defun behave (animal)
(case animal
(dog (wag-tail)

(bark))
(rat (scurry)

(squeak))
(cat (rub-legs)

(scratch-carpet))))

What if we want to add a new type of animal? If we were planning to add new
animals, it would have been better to define behave as follows:

(defun behave (animal)
(funcall (get animal ’behavior)))

and to define the behavior of an individual animal as a function stored, for example,
on the property list of its name:
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(setf (get ’dog ’behavior)
#’(lambda ()

(wag-tail)
(bark)))

This way, all we need do in order to add a new animal is define a new property.
No functions have to be rewritten.

The second approach, though more flexible, looks slower. It is. If speed were
critical, we would use structures instead of property lists and, especially, compiled
instead of interpreted functions. (Section 2.9 explains how to make these.) With
structures and compiled functions, the more flexible type of code can approach or
exceed the speed of versions using case statements.

This use of functions corresponds to the concept of amethod in object-oriented
programming. Generally speaking, a method is a function which is a property of
an object, and that’s just what we have. If we add inheritance to this model, we’ll
have all the elements of object-oriented programming. Chapter 25 will show that
this can be done with surprisingly little code.

One of the big selling points of object-oriented programming is that it makes
programs extensible. This prospect excites less wonder in the Lisp world, where
extensibility has always been taken for granted. If the kind of extensibility we
need does not depend too much on inheritance, then plain Lisp may already be
sufficient.

2.5 Scope

Common Lisp is a lexically scoped Lisp. Scheme is the oldest dialect with lexical
scope; before Scheme, dynamic scope was considered one of the defining features
of Lisp.

The difference between lexical and dynamic scope comes down to how an
implementation deals with free variables. A symbol is bound in an expression
if it has been established as a variable, either by appearing as a parameter, or by
variable-binding operators like let and do. Symbols which are not bound are
said to be free. In this example, scope comes into play:

(let ((y 7))
(defun scope-test (x)
(list x y)))

Within thedefun expression,x is bound and y is free. Free variables are interesting
because it’s not obvious what their values should be. There’s no uncertainty about
the value of a bound variable—when scope-test is called, the value of x should
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be whatever is passed as the argument. But what should be the value of y? This
is the question answered by the dialect’s scope rules.

In a dynamically scoped Lisp, to find the value of a free variable when exe-
cuting scope-test, we look back through the chain of functions that called it.
When we find an environment where y was bound, that binding of y will be the
one used in scope-test. If we find none, we take the global value of y. Thus, in
a dynamically scoped Lisp, ywould have the value it had in the calling expression:

> (let ((y 5))
(scope-test 3))

(3 5)

With dynamic scope, it means nothing that y was bound to 7 when scope-test
was defined. All that matters is that y had a value of 5 when scope-test was
called.

In a lexically scoped Lisp, instead of looking back through the chain of calling
functions, we look back through the containing environments at the time the
function was defined. In a lexically scoped Lisp, our example would catch the
binding of y where scope-test was defined. So this is what would happen in
Common Lisp:

> (let ((y 5))
(scope-test 3))

(3 7)

Here the binding of y to 5 at the time of the call has no effect on the returned
value.

Though you can still get dynamic scope by declaring a variable to be special,
lexical scope is the default in Common Lisp. On the whole, the Lisp community
seems to view the passing of dynamic scope with little regret. For one thing, it
used to lead to horribly elusive bugs. But lexical scope is more than a way of
avoiding bugs. As the next section will show, it also makes possible some new
programming techniques.

2.6 Closures

Because Common Lisp is lexically scoped, when we define a function containing
free variables, the system must save copies of the bindings of those variables at
the time the function was defined. Such a combination of a function and a set
of variable bindings is called a closure. Closures turn out to be useful in a wide
variety of applications.
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Closures are so pervasive in Common Lisp programs that it’s possible to use
them without even knowing it. Every time you give mapcar a sharp-quoted
lambda-expression containing free variables, you’re using closures. For example,
suppose we want to write a function which takes a list of numbers and adds a
certain amount to each one. The function list+

(defun list+ (lst n)
(mapcar #’(lambda (x) (+ x n))

lst))

will do what we want:

> (list+ ’(1 2 3) 10)
(11 12 13)

If we look closely at the function which is passed to mapcar within list+, it’s
actually a closure. The instance of n is free, and its binding comes from the
surrounding environment. Under lexical scope, every such use of a mapping
function causes the creation of a closure.1

Closures play a more conspicuous role in a style of programming promoted
by Abelson and Sussman’s classic Structure and Interpretation of Computer Pro-◦
grams. Closures are functions with local state. The simplest way to use this state
is in a situation like the following:

(let ((counter 0))
(defun new-id () (incf counter))
(defun reset-id () (setq counter 0)))

These two functions share a variable which serves as a counter. The first one
returns successive values of the counter, and the second resets the counter to 0.
The same thing could be done by making the counter a global variable, but this
way it is protected from unintended references.

It’s also useful to be able to return functions with local state. For example, the
function make-adder

(defun make-adder (n)
#’(lambda (x) (+ x n)))

takes a number, and returns a closure which, when called, adds that number to its
argument. We can make as many instances of adders as we want:

1Under dynamic scope the same idiom will work for a different reason—so long as neither of
mapcar’s parameter is called x.
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> (setq add2 (make-adder 2)
add10 (make-adder 10))

#<Interpreted-Function BF162E>
> (funcall add2 5)
7
> (funcall add10 3)
13

In the closures returned by make-adder, the internal state is fixed, but it’s also
possible to make closures which can be asked to change their state.

(defun make-adderb (n)
#’(lambda (x &optional change)

(if change
(setq n x)
(+ x n))))

This new version of make-adder returns closures which, when called with one
argument, behave just like the old ones.

> (setq addx (make-adderb 1))
#<Interpreted-Function BF1C66>
> (funcall addx 3)
4

However, when the new type of adder is called with a non-nil second argument,
its internal copy of n will be reset to the value passed as the first argument:

> (funcall addx 100 t)
100
> (funcall addx 3)
103

It’s even possible to return a group of closures which share the same data
objects. Figure 2.1 contains a function which creates primitive databases. It takes
an assoc-list (db), and returns a list of three closures which query, add, and delete
entries, respectively.

Each call to make-dbmsmakes a new database—a new set of functions closed
over their own shared copy of an assoc-list.

> (setq cities (make-dbms ’((boston . us) (paris . france))))
(#<Interpreted-Function 8022E7>
#<Interpreted-Function 802317>
#<Interpreted-Function 802347>)
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(defun make-dbms (db)
(list
#’(lambda (key)

(cdr (assoc key db)))
#’(lambda (key val)

(push (cons key val) db)
key)

#’(lambda (key)
(setf db (delete key db :key #’car))
key)))

Figure 2.1: Three closures share a list.

The actual assoc-list within the database is invisible from the outside world—we
can’t even tell that it’s an assoc-list—but it can be reached through the functions
which are components of cities:

> (funcall (car cities) ’boston)
US
> (funcall (second cities) ’london ’england)
LONDON
> (funcall (car cities) ’london)
ENGLAND

Calling the car of a list is a bit ugly. In real programs, the access functions might
instead be entries in a structure. Using them could also be cleaner—databases
could be reached indirectly via functions like:

(defun lookup (key db)
(funcall (car db) key))

However, the basic behavior of closures is independent of such refinements.
In real programs, the closures and data structureswould also bemore elaborate

than thosewe see in make-adderor make-dbms. The single shared variable could
be any number of variables, each bound to any sort of data structure.

Closures are one of the distinct, tangible benefits of Lisp. SomeLisp programs
could, with effort, be translated into less powerful languages. But just try to
translate a programwhich uses closures as above, and it will become evident how
much work this abstraction is saving us. Later chapters will deal with closures in
more detail. Chapter 5 shows how to use them to build compound functions, and
Chapter 6 looks at their use as a substitute for traditional data structures.
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2.7 Local Functions

When we define functions with lambda-expressions, we face a restriction which
doesn’t arise with defun: a function defined in a lambda-expression doesn’t have
a name and therefore has noway of referring to itself. This means that in Common
Lisp we can’t use lambda to define a recursive function. ◦

If we want to apply some function to all the elements of a list, we use the most
familiar of Lisp idioms:

> (mapcar #’(lambda (x) (+ 2 x))
’(2 5 7 3))

(4 7 9 5)

What about cases where we want to give a recursive function as the first argument
to mapcar? If the function has been defined with defun, we can simply refer to
it by name:

> (mapcar #’copy-tree ’((a b) (c d e)))
((A B) (C D E))

But now suppose that the function has to be a closure, taking some bindings from
the environment in which the mapcar occurs. In our example list+,

(defun list+ (lst n)
(mapcar #’(lambda (x) (+ x n))

lst))

thefirst argument to mapcar,#’(lambda (x) (+ x n)), must be definedwithin
list+ because it needs to catch the binding of n. So far so good, but what if we
want to give mapcar a function which both needs local bindings and is recursive?
We can’t use a function defined elsewhere with defun, because we need bindings
from the local environment. And we can’t use lambda to define a recursive
function, because the function will have no way of referring to itself.

Common Lisp gives us labels as a way out of this dilemma. With one
important reservation, labels could be described as a sort of let for functions.
Each of the binding specifications in a labels expression should have the form

(⟨name⟩ ⟨parameters⟩ . ⟨body⟩)

Within the labels expression, ⟨name⟩ will refer to a function equivalent to:

#’(lambda ⟨parameters⟩ . ⟨body⟩)

So for example:
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> (labels ((inc (x) (1+ x)))
(inc 3))

4

However, there is an important difference between let and labels. In a let
expression, the value of one variable can’t depend on another variable made by
the same let—that is, you can’t say

(let ((x 10) (y x))
y)

and expect the value of the newy to reflect that of the newx. In contrast, the body of
a function f defined in alabels expressionmay refer to any other function defined
there, including f itself, which makes recursive function definitions possible.

Using labels we can write a function analogous to list+, but in which the
first argument to mapcar is a recursive function:

(defun count-instances (obj lsts)
(labels ((instances-in (lst)

(if (consp lst)
(+ (if (eq (car lst) obj) 1 0)

(instances-in (cdr lst)))
0)))

(mapcar #’instances-in lsts)))

This function takes an object and a list, and returns a list of the number of
occurrences of the object in each element:

> (count-instances ’a ’((a b c) (d a r p a) (d a r) (a a)))
(1 2 1 2)

2.8 Tail-Recursion

A recursive function is one that calls itself. Such a call is tail-recursive if no
work remains to be done in the calling function afterwards. This function is not
tail-recursive

(defun our-length (lst)
(if (null lst)

0
(1+ (our-length (cdr lst)))))

because on returning from the recursive call we have to pass the result to 1+. The
following function is tail-recursive, though
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(defun our-find-if (fn lst)
(if (funcall fn (car lst))

(car lst)
(our-find-if fn (cdr lst))))

because the value of the recursive call is immediately returned.
Tail-recursion is desirable because many Common Lisp compilers can trans-

form tail-recursive functions into loops. With such a compiler, you can have the
elegance of recursion in your source code without the overhead of function calls
at runtime. The gain in speed is usually great enough that programmers go out of
their way to make functions tail-recursive.

A function which isn’t tail-recursive can often be transformed into one that is
by embedding in it a local function which uses an accumulator. In this context, an
accumulator is a parameter representing the value computed so far. For example,
our-length could be transformed into

(defun our-length (lst)
(labels ((rec (lst acc)

(if (null lst)
acc
(rec (cdr lst) (1+ acc)))))

(rec lst 0)))

where the number of list elements seen so far is contained in a second parameter,
acc. When the recursion reaches the end of the list, the value of acc will be
the total length, which can just be returned. By accumulating the value as we go
down the calling tree instead of constructing it on the way back up, we can make
rec tail-recursive.

Many Common Lisp compilers can do tail-recursion optimization, but not all
of them do it by default. So after writing your functions to be tail-recursive, you
may also want to put

(proclaim ’(optimize speed))

at the top of the file, to ensure that the compiler can take advantage of your efforts.2
Given tail-recursion and type declarations, existing Common Lisp compilers

can generate code that runs as fast as, or faster than, C. Richard Gabriel gives as ◦
an example the following function, which returns the sum of the integers from 1
to n:

2The declaration (optimize speed) ought to be an abbreviation for (optimize (speed 3)).
However, one Common Lisp implementation does tail-recursion optimization with the former, but not
the latter.
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(defun triangle (n)
(labels ((tri (c n)

(declare (type fixnum n c))
(if (zerop n)

c
(tri (the fixnum (+ n c))

(the fixnum (- n 1))))))
(tri 0 n)))

This is what fast Common Lisp code looks like. At first it may not seem natural
to write functions this way. It’s often a good idea to begin by writing a function
in whatever way seems most natural, and then, if necessary, transforming it into a
tail-recursive equivalent.

2.9 Compilation

Lisp functions can be compiled either individually or by the file. If you just type
a defun expression into the toplevel,

> (defun foo (x) (1+ x))
FOO

many implementationswill create an interpreted function. You can check whether
a given function is compiled by feeding it to compiled-function-p:

> (compiled-function-p #’foo)
NIL

We can have foo compiled by giving its name to compile

> (compile ’foo)
FOO

which will compile the definition of foo and replace the interpreted version with
a compiled one.◦

> (compiled-function-p #’foo)
T

Compiled and interpreted functions are both Lisp objects, and behave the same,
except with respect to compiled-function-p. Literal functions can also be
compiled: compile expects its first argument to be a name, but if you give nil
as the first argument, it will compile the lambda-expression given as the second
argument.
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> (compile nil ’(lambda (x) (+ x 2)))
#<Compiled-Function BF55BE>

If you give both the name and function arguments, compile becomes a sort of
compiling defun:

> (progn (compile ’bar ’(lambda (x) (* x 3)))
(compiled-function-p #’bar))

T

Having compile in the languagemeans that a programcould build and compile
new functions on thefly. However, calling compile explicitly is a drasticmeasure,
comparable to calling eval, and should be viewed with the same suspicion.3
When Section 2.1 said that creating new functions at runtime was a routinely
used programming technique, it referred to new closures like those made by
make-adder, not functions made by calling compile on raw lists. Calling
compile is not a routinely used programming technique—it’s an extremely rare
one. So beware of doing it unnecessarily. Unless you’re implementing another
language on top of Lisp (and much of the time, even then), what you need to do
may be possible with macros.

There are two sorts of functions which you can’t give as an argument to
compile. According to CLTL2 (p. 677), you can’t compile a function “defined
interpretively in a non-null lexical environment.” That is, if at the toplevel you
define foo within a let

> (let ((y 2))
(defun foo (x) (+ x y)))

then (compile ’foo) will not necessarily work.4 You also can’t call compile
on a function which is already compiled. In this situation, CLTL2 hints darkly that
“the consequences. . .are unspecified.”

The usual way to compile Lisp code is not to compile functions individually
with compile, but to compile whole files with compile-file. This function
takes a filename and creates a compiled version of the source file—typically with
the same base name but a different extension. When the compiled file is loaded,
compiled-function-p should return true for all the functions defined in the file.

Later chapterswill depend on another effect of compilation: when one function
occurs within another function, and the containing function is compiled, the inner

3An explanation of why it is bad to call eval explicitly appears on page 278.
4It’s ok to have this code in a file and then compile the file. The restriction is imposed on interpreted

code for implementation reasons, not because there’s anything wrongwith defining functions in distinct
lexical environments.
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function will also get compiled. CLTL2 does not seem to say explicitly that this
will happen, but in a decent implementation you can count on it.

The compiling of inner functions becomes evident in functions which return
functions. When make-adder (page 18) is compiled, it will return compiled
functions:

> (compile ’make-adder)
MAKE-ADDER
> (compiled-function-p (make-adder 2))
T

As later chapters will show, this fact is of great importance in the implementation
of embedded languages. If a new language is implemented by transformation,
and the transformation code is compiled, then it yields compiled output—and
so becomes in effect a compiler for the new language. (A simple example is
described on page 81.)

If we have a particularly small function, we may want to request that it be
compiled inline. Otherwise, the machinery of calling it could entail more effort
than the function itself. If we define a function:

(defun 50th (lst) (nth 49 lst))

and make the declaration:

(proclaim ’(inline 50th))

then a reference to 50th within a compiled function should no longer require a
real function call. If we define and compile a function which calls 50th,

(defun foo (lst)
(+ (50th lst) 1))

then when foo is compiled, the code for 50th should be compiled right into it,
just as if we had written

(defun foo (lst)
(+ (nth 49 lst) 1))

in the first place. The drawback is that if we redefine 50th, we also have to
recompile foo, or it will still reflect the old definition. The restrictions on inline
functions are basically the same as those on macros (see Section 7.9).◦
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2.10 Functions from Lists

In some earlier dialects of Lisp, functionswere represented as lists. This gaveLisp
programs the remarkable ability to write and execute their own Lisp programs.
In Common Lisp, functions are no longer made of lists—good implementations
compile them into native machine code. But you can still write programs that
write programs, because lists are the input to the compiler.

It cannot be overemphasized how important it is that Lisp programs can
write Lisp programs, especially since this fact is so often overlooked. Even
experienced Lisp users rarely realize the advantages they derive from this feature
of the language. This is why Lisp macros are so powerful, for example. Most
of the techniques described in this book depend on the ability to write programs
which manipulate Lisp expressions.



3

Functional Programming

The previous chapter explained how Lisp and Lisp programs are both built out
of a single raw material: the function. Like any building material, its qualities
influence both the kinds of things we build, and the way we build them.

This chapter describes the kind of construction methods which prevail in
the Lisp world. The sophistication of these methods allows us to attempt more
ambitious kinds of programs. The next chapter will describe one particularly
important class of programs which become possible in Lisp: programs which
evolve instead of being developed by the old plan-and-implement method.

3.1 Functional Design

The character of an object is influenced by the elements from which it is made. A
wooden building looks different from a stone one, for example. Even when you
are too far away to see wood or stone, you can tell from the overall shape of the
building what it’s made of. The character of Lisp functions has a similar influence
on the structure of Lisp programs.

Functional programming means writing programs which work by returning
values instead of by performing side-effects. Side-effects include destructive
changes to objects (e.g. by rplaca) and assignments to variables (e.g. by setq).
If side-effects are few and localized, programs become easier to read, test, and
debug. Lisp programs have not always been written in this style, but over time
Lisp and functional programming have gradually become inseparable.

An example will show how functional programming differs from what you
might do in another language. Suppose for some reason we want the elements of

28
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(defun bad-reverse (lst)
(let* ((len (length lst))

(ilimit (truncate (/ len 2))))
(do ((i 0 (1+ i))

(j (1- len) (1- j)))
((>= i ilimit))

(rotatef (nth i lst) (nth j lst)))))

Figure 3.1: A function to reverse lists.

a list in the reverse order. Instead of writing a function to reverse lists, we write a
function which takes a list, and returns a list with the same elements in the reverse
order.

Figure 3.1 contains a function to reverse lists. It treats the list as an array,
reversing it in place; its return value is irrelevant:

> (setq lst ’(a b c))
(A B C)
> (bad-reverse lst)
NIL
> lst
(C B A)

As its name suggests, bad-reverse is far from good Lisp style. Moreover, its
ugliness is contagious: because it works by side-effects, it will also draw its callers
away from the functional ideal.

Though cast in the role of the villain, bad-reverse does have one merit: it
shows the Common Lisp idiom for swapping two values. The rotatef macro
rotates the values of any number of generalized variables—that is, expressions
you could give as the first argument to setf. When applied to just two arguments,
the effect is to swap them.

In contrast, Figure 3.2 shows a function which returns reversed lists. With
good-reverse, we get the reversed list as the return value; the original list is not
touched.

> (setq lst ’(a b c))
(A B C)
> (good-reverse lst)
(C B A)
> lst
(A B C)



30 FUNCTIONAL PROGRAMMING

(defun good-reverse (lst)
(labels ((rev (lst acc)

(if (null lst)
acc
(rev (cdr lst) (cons (car lst) acc)))))

(rev lst nil)))

Figure 3.2: A function to return reversed lists.

It used to be thought that you could judge someone’s character by looking at
the shape of his head. Whether or not this is true of people, it is generally true
of Lisp programs. Functional programs have a different shape from imperative
ones. The structure in a functional program comes entirely from the composition
of arguments within expressions, and since arguments are indented, functional
code will show more variation in indentation. Functional code looks fluid1 on the
page; imperative code looks solid and blockish, like Basic.

Even from a distance, the shapes of bad- and good-reverse suggest which
is the better program. And despite being shorter, good-reverse is also more
efficient: O(n) instead of O(n2).

We are spared the trouble of writing reverse because Common Lisp has
it built-in. It is worth looking briefly at this function, because it is one that
often brings to the surface misconceptions about functional programming. Like
good-reverse, the built-in reverseworks by returning a value—it doesn’t touch
its arguments. But people learning Lisp may assume that, like bad-reverse, it
works by side-effects. If in some part of a program they want a list lst to be
reversed, they may write

(reverse lst)

and wonder why the call seems to have no effect. In fact, if we want effects from
such a function, we have to see to it ourselves in the calling code. That is, we
need to write

(setq lst (reverse lst))

instead. Operators like reverse are intended to be called for return values, not
side-effects. It is worth writing your own programs in this style too—not only for
its inherent benefits, but because, if you don’t, you will be working against the
language.

1For a characteristic example, see page 242.



3.1 FUNCTIONAL DESIGN 31

One of the points we ignored in the comparison of bad- and good-reverse is
that bad-reverse doesn’t cons. Instead of building new list structure, it operates
on the original list. This can be dangerous—the list could be needed elsewhere
in the program—but for efficiency it is sometimes necessary. For such cases,
Common Lisp provides an O(n) destructive reversing function called nreverse. ◦

Adestructive function is one that can alter the arguments passed to it. However,
even destructive functions usually work by returning values: you have to assume
that nreverse will recycle lists you give to it as arguments, but you still can’t
assume that it will reverse them. As before, the reversed list has to be found in
the return value. You still can’t write

(nreverse lst)

in the middle of a function and assume that afterwards lst will be reversed. This
is what happens in most implementations:

> (setq lst ’(a b c))
(A B C)
> (nreverse lst)
(C B A)
> lst
(A)

To reverse lst, you have would have to set lst to the return value, as with plain
reverse.

If a function is advertised as destructive, that doesn’t mean that it’s meant
to be called for side-effects. The danger is, some destructive functions give the
impression that they are. For example,

(nconc x y)

almost always has the same effect as

(setq x (nconc x y))

If you wrote code which relied on the former idiom, it might seem to work for
some time. However, it wouldn’t do what you expected when x was nil.

Only a few Lisp operators are intended to be called for side-effects. In general,
the built-in operators aremeant to be called for their return values. Don’t bemisled
by names like sort, remove, or substitute. If you want side-effects, use setq
on the return value.

This very rule suggests that some side-effects are inevitable. Having functional
programming as an ideal doesn’t imply that programs should never have side-
effects. It just means that they should have no more than necessary.
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It may take time to develop this habit. One way to start is to treat the following
operators as if there were a tax on their use:

set setq setf psetf psetq incf decf push pop pushnew
rplaca rplacd rotatef shiftf remf remprop remhash

and also let*, in which imperative programs often lie concealed. Treating
these operators as taxable is only proposed as a help toward, not a criterion for,
good Lisp style. However, this alone can get you surprisingly far.

In other languages, one of the most common causes of side-effects is the need
for a function to return multiple values. If functions can only return one value,
they have to “return” the rest by altering their parameters. Fortunately, this isn’t
necessary in Common Lisp, because any function can return multiple values.

The built-in function truncate returns two values, for example—the trun-
cated integer, and what was cut off in order to create it. A typical implementation
will print both when truncate is called at the toplevel:

> (truncate 26.21875)
26
0.21875

When the calling code only wants one value, the first one is used:

> (= (truncate 26.21875) 26)
T

The calling code can catch both return values by using a multiple-value-bind.
This operator takes a list of variables, a call, and a body of code. The body is
evaluated with the variables bound to the respective return values from the call:

> (multiple-value-bind (int frac) (truncate 26.21875)
(list int frac))

(26 0.21875)

Finally, to return multiple values, we use the values operator:

> (defun powers (x)
(values x (sqrt x) (expt x 2)))

POWERS
> (multiple-value-bind (base root square) (powers 4)

(list base root square))
(4 2.0 16)
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Functional programming is a good idea in general. It is a particularly good idea
in Lisp, because Lisp has evolved to support it. Built-in operators like reverse
and nreverse are meant to be used in this way. Other operators, like values
and multiple-value-bind, have been provided specifically to make functional
programming easier.

3.2 Imperative Outside-In

The aims of functional programming may show more clearly when contrasted
with those of the more common approach, imperative programming. A functional
program tells you what it wants; an imperative program tells you what to do. A
functional program says “Return a list of a and the square of the first element of
x:”

(defun fun (x)
(list ’a (expt (car x) 2)))

An imperative programs says “Get the first element of x, then square it, then return
a list of a and the square:”

(defun imp (x)
(let (y sqr)
(setq y (car x))
(setq sqr (expt y 2))
(list ’a sqr)))

Lisp users are fortunate in being able to write this program both ways. Some
languages are only suited to imperative programming—notablyBasic, along with
most machine languages. In fact, the definition of imp is similar in form to the
machine language code that most Lisp compilers would generate for fun.

Why write such code when the compiler could do it for you? For many
programmers, this question does not even arise. A language stamps its pattern on
our thoughts: someone used to programming in an imperative language may have
begun to conceive of programs in imperative terms, and may actually find it easier
to write imperative programs than functional ones. This habit of mind is worth
overcoming if you have a language that will let you.

For alumni of other languages, beginning to use Lisp may be like stepping
onto a skating rink for the first time. It’s actually much easier to get around on
ice than it is on dry land—if you use skates. Till then you will be left wondering
what people see in this sport.

What skates are to ice, functional programming is to Lisp. Together the two
allow you to travel more gracefully, with less effort. But if you are accustomed
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to another mode of travel, this may not be your experience at first. One of
the obstacles to learning Lisp as a second language is learning to program in a
functional style.

Fortunately there is a trick for transforming imperative programs into func-
tional ones. You can begin by applying this trick to finished code. Soon you will
begin to anticipate yourself, and transform your code as you write it. Soon after
that, you will begin to conceive of programs in functional terms from the start.

The trick is to realize that an imperative program is a functional program
turned inside-out. To find the functional program implicit in our imperative one,
we just turn it outside-in. Let’s try this technique on imp.

The first thing we notice is the creation of y and sqr in the initial let. This is
a sign that bad things are to follow. Like eval at runtime, uninitialized variables
are so rarely needed that they should generally be treated as a symptom of some
illness in the program. Such variables are often used like pins which hold the
program down and keep it from coiling into its natural shape.

However, we ignore them for the time being, and go straight to the end of
the function. What occurs last in an imperative program occurs outermost in a
functional one. So our first step is to grab the final call to list and begin stuffing
the rest of the program inside it—just like turning a shirt inside-out. We continue
by applying the same transformation repeatedly, just as we would with the sleeves
of the shirt, and in turn with their cuffs.

Starting at the end, we replace sqr with (expt y 2), yielding:

(list ’a (expt y 2)))

Then we replace y by (car x):

(list ’a (expt (car x) 2))

Now we can throw away the rest of the code, having stuffed it all into the last
expression. In the process we removed the need for the variables y and sqr, so
we can discard the let as well.

The final result is shorter than what we began with, and easier to understand.
In the original code, we’re faced with the final expression (list ’a sqr), and
it’s not immediately clear where the value of sqr comes from. Now the source of
the return value is laid out for us like a road map.

The example in this section was a short one, but the technique scales up.
Indeed, it becomes more valuable as it is applied to larger functions. Even
functions which perform side-effects can be cleaned up in the portions which
don’t.
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3.3 Functional Interfaces

Some side-effects are worse than others. For example, though this function calls
nconc

(defun qualify (expr)
(nconc (copy-list expr) (list ’maybe)))

it preserves referential transparency.2 If you call it with a given argument, it will
always return the same (equal) value. From the caller’s point of view, qualify
might as well be purely functional code. We can’t say the same for bad-reverse
(page 29), which actually modifies its argument.

Instead of treating all side-effects as equally bad, it would be helpful if we had
some way of distinguishing between such cases. Informally, we could say that it’s
harmless for a function to modify something that no one else owns. For example,
the nconc in qualify is harmless because the list given as the first argument is
freshly consed. No one else could own it.

In the general case, we have to talk about ownership not by functions, but by
invocations of functions. Though no one else owns the variable x here,

(let ((x 0))
(defun total (y)
(incf x y)))

the effects of one call will be visible in succeeding ones. So the rule should be: a
given invocation can safely modify what it uniquely owns.

Who owns arguments and return values? The convention in Lisp seems to be
that an invocation owns objects it receives as return values, but not objects passed
to it as arguments. Functions that modify their arguments are distinguished by the
label “destructive,” but there is no special name for functions that modify objects
returned to them.

This function adheres to the convention, for example:

(defun ok (x)
(nconc (list ’a x) (list ’c)))

It calls nconc, which doesn’t, but since the list spliced by nconc will always be
freshly made rather than, say, a list passed to ok as an argument, ok itself is ok.

If it were written slightly differently, however,

(defun not-ok (x)
(nconc (list ’a) x (list ’c)))

2A definition of referential transparency appears on page 198.
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then the call to nconc would be modifying an argument passed to not-ok.
Many Lisp programs violate this convention, at least locally. However, as we

saw with ok, local violations need not disqualify the calling function. And func-
tions which do meet the preceding conditions will retain many of the advantages
of purely functional code.

To write programs that are really indistinguishable from functional code, we
have to add one more condition. Functions can’t share objects with other code
that doesn’t follow the rules. For example, though this function doesn’t have
side-effects,

(defun anything (x)
(+ x *anything*))

its return value depends on the global variable *anything*. So if any other
function can alter the value of this variable, anything could return anything.

Code written so that each invocation only modifies what it owns is almost as
good as purely functional code. A function that meets all the preceding conditions
at least presents a functional interface to the world: if you call it twice with the
same arguments, you should get the same results. And this, as the next section
will show, is a crucial ingredient in bottom-up programming.

One problemwith destructive operations is that, like global variables, they can
destroy the locality of a program. When you’re writing functional code, you can
narrow your focus: you only need consider the functions that call, or are called
by, the one you’re writing. This benefit disappears when you want to modify
something destructively. It could be used anywhere.

The conditions above do not guarantee the perfect locality you get with purely
functional code, though they do improve things somewhat. For example, suppose
that f calls g as below:

(defun f (x)
(let ((val (g x)))
; safe to modify val here?
))

Is it safe for f to nconc something onto val? Not if g is identity: then we
would be modifying something originally passed as an argument to f itself.

So even in programs which do follow the convention, we may have to look
beyond f if we want to modify something there. However, we don’t have to
look as far: instead of worrying about the whole program, we now only have to
consider the subtree beginning with f.

A corollary of the convention above is that functions shouldn’t return anything
that isn’t safe to modify. Thus one should avoid writing functions whose return
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values incorporate quoted objects. If we define exclaim so that its return value
incorporates a quoted list,

(defun exclaim (expression)
(append expression ’(oh my)))

Then any later destructive modification of the return value

> (exclaim ’(lions and tigers and bears))
(LIONS AND TIGERS AND BEARS OH MY)
> (nconc * ’(goodness))
(LIONS AND TIGERS AND BEARS OH MY GOODNESS)

could alter the list within the function:

> (exclaim ’(fixnums and bignums and floats))
(FIXNUMS AND BIGNUMS AND FLOATS OH MY GOODNESS)

To make exclaim proof against such problems, it should be written:

(defun exclaim (expression)
(append expression (list ’oh ’my)))

There is one major exception to the rule that functions shouldn’t return quoted
lists: the functions which generate macro expansions. Macro expanders can
safely incorporate quoted lists in the expansions they generate, if the expansions
are going straight to the compiler.

Otherwise, one might as well be a suspicious of quoted lists generally. Many
other uses of them are likely to be something which ought to be done with a macro
like in (page 152).

3.4 Interactive Programming

The previous sections presented the functional style as a good way of organizing
programs. But it is more than this. Lisp programmers did not adopt the functional
style purely for aesthetic reasons. They use it because it makes their work easier.
In Lisp’s dynamic environment, functional programs can be written with unusual
speed, and at the same time, can be unusually reliable.

In Lisp it is comparatively easy to debug programs. A lot of information is
available at runtime, which helps in tracing the causes of errors. But even more
important is the ease with which you can test programs. You don’t have to compile
a program and test the whole thing at once. You can test functions individually
by calling them from the toplevel loop.
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Incremental testing is so valuable that Lisp style has evolved to take advantage
of it. Programs written in the functional style can be understood one function at a
time, and from the point of view of the reader this is its main advantage. However,
the functional style is also perfectly adapted to incremental testing: programs
written in this style can also be tested one function at a time. When a function
neither examines nor alters external state, any bugs will appear immediately. Such
a function can affect the outside world only through its return values. Insofar as
these are what you expected, you can trust the code which produced them.

Experienced Lisp programmers actually design their programs to be easy to
test:

1. They try to segregate side-effects in a few functions, allowing the greater
part of the program to be written in a purely functional style.

2. If a functionmust perform side-effects, they try at least to give it a functional
interface.

3. They give each function a single, well-defined purpose.

When a function is written, they can test it on a selection of representative cases,
then move on to the next one. If each brick does what it’s supposed to do, the wall
will stand.

In Lisp, the wall can be better-designed as well. Imagine the kind of conver-
sation you would have with someone so far away that there was a transmission
delay of one minute. Now imagine speaking to someone in the next room. You
wouldn’t just have the same conversation faster, you would have a different kind
of conversation. In Lisp, developing software is like speaking face-to-face. You
can test code as you’re writing it. And instant turnaround has just as dramatic an
effect on development as it does on conversation. You don’t just write the same
program faster; you write a different kind of program.

How so? When testing is quicker you can do it more often. In Lisp, as in any
language, development is a cycle of writing and testing. But in Lisp the cycle is
very short: single functions, or even parts of functions. And if you test everything
as you write it, you will know where to look when errors occur: in what you
wrote last. Simple as it sounds, this principle is to a large extent what makes
bottom-up programming feasible. It brings an extra degree of confidence which
enables Lisp programmers to break free, at least part of the time, from the old
plan-and-implement style of software development.

Section 1.1 stressed that bottom-up design is an evolutionary process. You
build up a language as you write a program in it. This approach can work only
if you trust the lower levels of code. If you really want to use this layer as a
language, you have to be able to assume, as you would with any language, that
any bugs you encounter are bugs in your application and not in the language itself.
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So your new abstractions are supposed to bear this heavy burden of responsi-
bility, and yet you’re supposed to just spin them off as the need arises? Just so; in
Lisp you can have both. When you write programs in a functional style and test
them incrementally, you can have the flexibility of doing things on the spur of the
moment, plus the kind of reliability one usually associates with careful planning.



4

Utility Functions

Common Lisp operators come in three types: functions and macros, which you
can write yourself, and special forms, which you can’t. This chapter describes
techniques for extending Lisp with new functions. But “techniques” here means
something different from what it usually does. The important thing to know about
such functions is not how they’rewritten, but where they come from. An extension
to Lisp will be written using mostly the same techniques you would use to write
any other Lisp function. The hard part of writing these extensions is not deciding
how to write them, but deciding which ones to write.

4.1 Birth of a Utility

In its simplest form, bottom-up programming means second-guessing whoever
designed your Lisp. At the same time as you write your program, you also add to
Lisp new operators which make your program easy to write. These new operators
are called utilities.

The term “utility” has no precise definition. A piece of code can be called
a utility if it seems too small to be considered as a separate application, and too
general-purpose to be considered as part of a particular program. A database
program would not be a utility, for example, but a function which performed a
single operation on a list could be. Most utilities resemble the functions andmacros
that Lisp has already. In fact, many of Common Lisp’s built-in operators began
life as utilities. The function remove-if-not, which collects all the elements of
a list satisfying some predicate, was defined by individual programmers for years
before it became a part of Common Lisp.

40
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Learning to write utilities would be better described as learning the habit of
writing them, rather than the technique of writing them. Bottom-up programming
means simultaneously writing a program and a programming language. To do this
well, you have to develop a fine sense of which operators a program is lacking.
You have to be able to look at a program and say, “Ah, what you really mean to
say is this.”

For example, suppose that nicknames is a function which takes a name
and builds a list of all the nicknames which could be derived from it. Given
this function, how do we collect all the nicknames yielded by a list of names?
Someone learning Lisp might write a function like:

(defun all-nicknames (names)
(if (null names)

nil
(nconc (nicknames (car names))

(all-nicknames (cdr names)))))

A more experienced Lisp programmer can look at such a function and say “Ah,
what you really want is mapcan.” Then instead of having to define and call a
new function to find all the nicknames of a group of people, you can use a single
expression:

(mapcan #’nicknames people)

The definition of all-nicknames is reinventing the wheel. However, that’s not
all that’s wrong with it: it is also burying in a specific function something that
could be done by a general-purpose operator.

In this case the operator, mapcan, already exists. Anyone who knew about
mapcanwould feel a little uncomfortable looking at all-nicknames. To be good
at bottom-up programming is to feel equally uncomfortable when the missing
operator is one which hasn’t been written yet. You must be able to say “what you
really want is x,” and at the same time, to know what x should be.

Lisp programming entails, among other things, spinning off new utilities as
you need them. The aim of this section is to show how such utilities are born.
Suppose that towns is a list of nearby towns, sorted from nearest to farthest, and
that bookshops is a function which returns a list of all the bookshops in a city. If
we want to find the nearest town which has any bookshops, and the bookshops in
it, we could begin with:

(let ((town (find-if #’bookshops towns)))
(values town (bookshops town)))



42 UTILITY FUNCTIONS

But this is a bit inelegant: when find-if finds an element for which bookshops
returns a non-nil value, the value is thrown away, only to be recomputed as soon
as find-if returns. If bookshops were an expensive call, this idiom would be
inefficient as well as ugly. To avoid unnecessary work, we could use the following
function instead:

(defun find-books (towns)
(if (null towns)

nil
(let ((shops (bookshops (car towns))))
(if shops

(values (car towns) shops)
(find-books (cdr towns))))))

Then calling (find-books towns) would at least get us what we wanted with
no more computation than necessary. But wait—isn’t it likely that at some time in
the future we will want to do the same kind of search again? What we really want
here is a utility which combines find-if and some, returning both the successful
element, and the value returned by the test function. Such a utility could be defined
as:

(defun find2 (fn lst)
(if (null lst)

nil
(let ((val (funcall fn (car lst))))
(if val

(values (car lst) val)
(find2 fn (cdr lst))))))

Notice the similarity between find-books and find2. Indeed, the latter could
be described as the skeleton of the former. Now, using the new utility, we can
achieve our original aim with a single expression:

(find2 #’bookshops towns)

One of the unique characteristics of Lisp programming is the important role
of functions as arguments. This is part of why Lisp is well-adapted to bottom-up
programming. It’s easier to abstract out the bones of a function when you can
pass the flesh back as a functional argument.

Introductory programming courses teach early on that abstraction leads to less
duplication of effort. One of the first lessons is: don’t wire in behavior. For
example, instead of defining two functions which do the same thing but for one
or two constants, define a single function and pass the constants as arguments.
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In Lisp we can carry this idea further, because we can pass whole functions as
arguments. In both of the previous examples we went from a specific function to
a more general function which took a functional argument. In the first case we
used the predefined mapcan and in the second we wrote a new utility, find2, but
the general principle is the same: instead of mixing the general and the specific,
define the general and pass the specific as an argument.

When carefully applied, this principle yields noticeably more elegant pro-
grams. It is not the only force driving bottom-up design, but it is a major one. Of
the 32 utilities defined in this chapter, 18 take functional arguments.

4.2 Invest in Abstraction

If brevity is the soul of wit, it is also, along with efficiency, the essence of good
software. The cost of writing or maintaining a program increases with its length. ◦
All other things being equal, the shorter program is the better.

From this point of view, the writing of utilities should be treated as a capital
expenditure. By replacing find-books with the utility find2, we end up with
just as many lines of code. But we have made the program shorter in one sense,
because the length of the utility does not have to be charged against the current
program.

It is not just an accounting trick to treat extensions to Lisp as capital expendi-
tures. Utilities can go into a separate file; they will not clutter our view as we’re
working on the program, nor are they likely to be involved if we have to return
later to change the program in some respect.

As capital expenditures, however, utilities demand extra attention. It is espe-
cially important that they be well-written. They are going to be used repeatedly,
so any incorrectness or inefficiency will be multiplied. Extra care must also go
into their design: a new utility must be written for the general case, not just for the
problem at hand. Finally, like any capital expenditure, we need not be in a hurry
about it. If you’re thinking of spinning off some new operator, but aren’t sure
that you will want it elsewhere, write it anyway, but leave it with the particular
program which uses it. Later if you use the new operator in other programs, you
can promote it from a subroutine to a utility and make it generally accessible.

The utility find2 seems to be a good investment. By making a capital outlay
of 7 lines, we get an immediate savings of 7. The utility has paid for itself in the
first use. A programming language, Guy Steele wrote, should “cooperate with
our natural tendency towards brevity:”

. . .we tend to believe that the expense of a programming construct
is proportional to the amount of writer’s cramp that it causes us (by
“belief” I mean here an unconscious tendency rather than a fervent
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conviction). Indeed, this is not a bad psychological principle for
language designers to keep in mind. We think of addition as cheap◦
partly because we can notate it with a single character: “+”. Even if
we believe that a construct is expensive, we will often prefer it to a
cheaper one if it will cut our writing effort in half.

In any language, the “tendency towards brevity” will cause trouble unless it is
allowed to vent itself in new utilities. The shortest idioms are rarely the most
efficient ones. If we want to know whether one list is longer than another, raw
Lisp will tempt us to write

(> (length x) (length y))

If we want to map a function over several lists, we will likewise be tempted to join
them together first:

(mapcar fn (append x y z))

Such examples show that it’s especially important to write utilities for situations
we might otherwise handle inefficiently. A language augmented with the right
utilities will lead us to write more abstract programs. If these utilities are properly
defined, it will also lead us to write more efficient ones.

A collection of utilities will certainly make programming easier. But they can
do more than that: they can make you write better programs. The muses, like
cooks, spring into action at the sight of ingredients. This is why artists like to
have a lot of tools and materials in their studios. They know that they are more
likely to start something new if they have what they need ready at hand. The same
phenomenon appears with programs written bottom-up. Once you have written a
new utility, you may find yourself using it more than you would have expected.

The following sections describe several classes of utility functions. They do
not by any means represent all the different types of functions you might add to
Lisp. However, all the utilities given as examples are ones that have proven their
worth in practice.

4.3 Operations on Lists

Lists were originally Lisp’s main data structure. Indeed, the name “Lisp” comes
from “LISt Processing.” It is as well not to be misled by this historical fact,
however. Lisp is not inherently about processing lists any more than Polo shirts
are for Polo. A highly optimized Common Lisp program might never see a list.

It would still be a list, though, at least at compile-time. The most sophisti-
cated programs, which use lists less at runtime, use them proportionately more at
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(proclaim ’(inline last1 single append1 conc1 mklist))

(defun last1 (lst)
(car (last lst)))

(defun single (lst)
(and (consp lst) (not (cdr lst))))

(defun append1 (lst obj)
(append lst (list obj)))

(defun conc1 (lst obj)
(nconc lst (list obj)))

(defun mklist (obj)
(if (listp obj) obj (list obj)))

Figure 4.1: Small functions which operate on lists.

compile-time, when generating macro expansions. So although the role of lists is
decreased in modern dialects, operations on lists can still make up the greater part
of a Lisp program.

Figures 4.1 and 4.2 contain a selection of functions which build or examine
lists. Those given in Figure 4.1 are among the smallest utilities worth defining.
For efficiency, they should all be declared inline (page 26).

The first, last1, returns the last element in a list. The built-in function last
returns the last cons in a list, not the last element. Most of the time one uses
it to get the last element, by saying (car (last ...)). Is it worth writing a
new utility for such a case? Yes, when it effectively replaces one of the built-in
operators.

Notice that last1does no error-checking. In general, none of the code defined
in this bookwill do error-checking. Partly this is just tomake the examples clearer.
But in shorter utilities it is reasonable not to do any error-checking anyway. If we
try:

> (last1 "blub")
>>Error: "blub" is not a list.
Broken at LAST...

the error will be caught by last itself. When utilities are small, they form a layer
of abstraction so thin that it starts to be transparent. As one can see through a thin
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layer of ice, one can see through utilities like last1 to interpret errors which arise
in the underlying functions.

The function single tests whether something is a list of one element. Lisp
programs need to make this test rather often. At first one might be tempted to use
the natural translation from English:

(= (length lst) 1)

Written this way, the test would be very inefficient. We know all we need to know
as soon as we’ve looked past the first element.

Next come append1 and conc1. Both attach a new element to the end of a
list, the latter destructively. These functions are small, but so frequently needed
that they are worth defining. Indeed, append1 has been predefined in previous
Lisp dialects.

So has mklist, which was predefined in (at least) Interlisp. Its purpose is to
ensure that something is a list. Many Lisp functions are written to return either a
single value or a list of values. Suppose that lookup is such a function, and that
we want to collect the results of calling it on all the elements of a list called data.
We can do so by writing:

(mapcan #’(lambda (d) (mklist (lookup d)))
data)

Figure 4.2 contains some larger examples of list utilities. The first, longer, is
useful from the point of view of efficiency as well as abstraction. It compares two
sequences and returns true only if the first is longer. When comparing the lengths
of two lists, it is tempting to do just that:

(> (length x) (length y))

This idiom is inefficient because it requires the program to traverse the entire
length of both lists. If one list is much longer than the other, all the effort of
traversing the difference in their lengths will be wasted. It is faster to do as
longer does and traverse the two lists in parallel.

Embedded within longer is a recursive function to compare the lengths of
two lists. Since longer is for comparing lengths, it should work for anything
that you could give as an argument to length. But the possibility of comparing
lengths in parallel only applies to lists, so the internal function is only called if
both arguments are lists.

The next function, filter, is to some what remove-if-not is to find-if.
The built-in remove-if-not returns all the values that might have been returned
if you called find-ifwith the same function on successive cdrs of a list. Analo-
gously, filter returns what some would have returned for successive cdrs of the
list:
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(defun longer (x y)
(labels ((compare (x y)

(and (consp x)
(or (null y)

(compare (cdr x) (cdr y))))))
(if (and (listp x) (listp y))

(compare x y)
(> (length x) (length y)))))

(defun filter (fn lst)
(let ((acc nil))
(dolist (x lst)
(let ((val (funcall fn x)))

(if val (push val acc))))
(nreverse acc)))

(defun group (source n)
(if (zerop n) (error "zero length"))
(labels ((rec (source acc)

(let ((rest (nthcdr n source)))
(if (consp rest)

(rec rest (cons (subseq source 0 n) acc))
(nreverse (cons source acc))))))

(if source (rec source nil) nil)))

Figure 4.2: Larger functions that operate on lists.

> (filter #’(lambda (x) (if (numberp x) (1+ x)))
’(a 1 2 b 3 c d 4))

(2 3 4 5)

You give filter a function and a list, and get back a list of whatever non-nil
values are returned by the function as it is applied to the elements of the list.

Notice that filter uses an accumulator in the same way as the tail-recursive
functions described in Section 2.8. Indeed, the aim in writing a tail-recursive
function is to have the compiler generate code in the shape of filter. For
filter, the straightforward iterative definition is simpler than the tail-recursive
one. The combination of push and nreverse in the definition of filter is the
standard Lisp idiom for accumulating a list.

The last function in Figure 4.2 is for grouping lists into sublists. You give
group a list l and a number n, and it will return a new list in which the elements
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of l are grouped into sublists of length n. The remainder is put in a final sublist.
Thus if we give 2 as the second argument, we get an assoc-list:

> (group ’(a b c d e f g) 2)
((A B) (C D) (E F) (G))

This function is written in a rather convoluted way in order to make it tail-
recursive (Section 2.8). The principle of rapid prototyping applies to individual
functions as well as to whole programs. When writing a function like flatten, it
can be a good idea to begin with the simplest possible implementation. Then, once
the simpler version works, you can replace it if necessary with a more efficient
tail-recursive or iterative version. If it’s short enough, the initial version could be
left as a comment to describe the behavior of its replacement. (Simpler versions
of group and several other functions in Figures 4.2 and 4.3 are included in the
note on page 389.)◦

The definition of group is unusual in that it checks for at least one error: a
second argument of 0, which would otherwise send the function into an infinite
recursion.

In one respect, the examples in this book deviate from usual Lisp practice: to
make the chapters independent of one another, the code examples are as much as
possible written in raw Lisp. Because it is so useful in defining macros, group is
an exception, and will reappear at several points in later chapters.

The functions in Figure 4.2 all work their way along the top-level structure of
a list. Figure 4.3 shows two examples of functions that descend into nested lists.
The first, flatten, was also predefined in Interlisp. It returns a list of all the
atoms that are elements of a list, or elements of its elements, and so on:

> (flatten ’(a (b c) ((d e) f)))
(A B C D E F)

The other function in Figure 4.3, prune, is to remove-if as copy-tree is to
copy-list. That is, it recurses down into sublists:

> (prune #’evenp ’(1 2 (3 (4 5) 6) 7 8 (9)))
(1 (3 (5)) 7 (9))

Every leaf for which the function returns true is removed.

4.4 Search

This section gives some examples of functions for searching lists. Common
Lisp provides a rich set of built-in operators for this purpose, but some tasks
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(defun flatten (x)
(labels ((rec (x acc)

(cond ((null x) acc)
((atom x) (cons x acc))
(t (rec (car x) (rec (cdr x) acc))))))

(rec x nil)))

(defun prune (test tree)
(labels ((rec (tree acc)

(cond ((null tree) (nreverse acc))
((consp (car tree))
(rec (cdr tree)

(cons (rec (car tree) nil) acc)))
(t (rec (cdr tree)

(if (funcall test (car tree))
acc
(cons (car tree) acc)))))))

(rec tree nil)))

Figure 4.3: Doubly-recursive list utilities.

are still difficult—or at least difficult to perform efficiently. We saw this in the
hypothetical case described on page 41. The first utility in Figure 4.4, find2, is◦
the one we defined in response to it.

The next utility, before, is written with similar intentions. It tells you if one
object is found before another in a list:

> (before ’b ’d ’(a b c d))
(B C D)

It is easy enough to do this sloppily in raw Lisp:

(< (position ’b ’(a b c d)) (position ’d ’(a b c d)))

But the latter idiom is inefficient and error-prone: inefficient because we don’t
need to find both objects, only the one that occurs first; and error-prone because
if either object isn’t in the list, nil will be passed as an argument to <. Using
before fixes both problems.

Since before is similar in spirit to a test for membership, it is written to
resemble the built-in member function. Like member it takes an optional test
argument, which defaults to eql. Also, instead of simply returning t, it tries to
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(defun find2 (fn lst)
(if (null lst)

nil
(let ((val (funcall fn (car lst))))

(if val
(values (car lst) val)
(find2 fn (cdr lst))))))

(defun before (x y lst &key (test #’eql))
(and lst

(let ((first (car lst)))
(cond ((funcall test y first) nil)

((funcall test x first) lst)
(t (before x y (cdr lst) :test test))))))

(defun after (x y lst &key (test #’eql))
(let ((rest (before y x lst :test test)))
(and rest (member x rest :test test))))

(defun duplicate (obj lst &key (test #’eql))
(member obj (cdr (member obj lst :test test))

:test test))

(defun split-if (fn lst)
(let ((acc nil))
(do ((src lst (cdr src)))

((or (null src) (funcall fn (car src)))
(values (nreverse acc) src))

(push (car src) acc))))

Figure 4.4: Functions which search lists.

return potentially useful information: the cdr beginning with the object given as
the first argument.

Note that before returns true if we encounter the first argument before en-
countering the second. Thus it will return true if the second argument doesn’t
occur in the list at all:

> (before ’a ’b ’(a))
(A)

We can peform a more exacting test by calling after, which requires that both
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its arguments occur in the list:

> (after ’a ’b ’(b a d))
(A D)
> (after ’a ’b ’(a))
NIL

If (member o l) finds o in the list l, it also returns the cdr of l beginning
with o. This return value can be used, for example, to test for duplication. If o is
duplicated in l, then it will also be found in the cdr of the list returned by member.
This idiom is embodied in the next utility, duplicate:

> (duplicate ’a ’(a b c a d))
(A D)

Other utilities to test for duplication could be written on the same principle.
More fastidious language designers are shocked that Common Lisp uses nil

to represent both falsity and the empty list. It does cause trouble sometimes (see
Section 14.2), but it is convenient in functions like duplicate. In questions of
sequence membership, it seems natural to represent falsity as the empty sequence.

The last function in Figure 4.4 is also a kind of generalization of member.
While member returns the cdr of the list beginning with the element it finds,
split-if returns both halves. This utility is mainly used with lists that are
ordered in some respect:

> (split-if #’(lambda (x) (> x 4))
’(1 2 3 4 5 6 7 8 9 10))

(1 2 3 4)
(5 6 7 8 9 10)

Figure 4.5 contains search functions of another kind: those which compare
elements against one another. The first, most, looks at one element at a time. It
takes a list and a scoring function, and returns the element with the highest score.
In case of ties, the element occurring first wins.

> (most #’length ’((a b) (a b c) (a) (e f g)))
(A B C)
3

For convenience, most also returns the score of the winner.
A more general kind of search is provided by best. This utility also takes a

function and a list, but here the function must be a predicate of two arguments. It
returns the element which, according to the predicate, beats all the others.
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(defun most (fn lst)
(if (null lst)

(values nil nil)
(let* ((wins (car lst))

(max (funcall fn wins)))
(dolist (obj (cdr lst))
(let ((score (funcall fn obj)))
(when (> score max)
(setq wins obj

max score))))
(values wins max))))

(defun best (fn lst)
(if (null lst)

nil
(let ((wins (car lst)))

(dolist (obj (cdr lst))
(if (funcall fn obj wins)

(setq wins obj)))
wins)))

(defun mostn (fn lst)
(if (null lst)

(values nil nil)
(let ((result (list (car lst)))

(max (funcall fn (car lst))))
(dolist (obj (cdr lst))
(let ((score (funcall fn obj)))
(cond ((> score max)

(setq max score
result (list obj)))

((= score max)
(push obj result)))))

(values (nreverse result) max))))

Figure 4.5: Search functions which compare elements.

> (best #’> ’(1 2 3 4 5))
5

We can think of best as being equivalent to car of sort, but muchmore efficient.
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It is up to the caller to provide a predicate which defines a total order on the
elements of the list. Otherwise the order of the elements will influence the result;
as before, in case of ties, the first element wins.

Finally, mostn takes a function and a list and returns a list of all the elements
for which the function yields the highest score (along with the score itself):

> (mostn #’length ’((a b) (a b c) (a) (e f g)))
((A B C) (E F G))
3

4.5 Mapping

Another widely used class of Lisp functions are the mapping functions, which
apply a function to a sequence of arguments. Figure 4.6 shows some examples of
new mapping functions. The first three are for applying a function to a range of
numbers without having to cons up a list to contain them. The first two, map0-n
and map1-n, work for ranges of positive integers:

> (map0-n #’1+ 5)
(1 2 3 4 5 6)

Both are written using the more general mapa-b, which works for any range of
numbers:

> (mapa-b #’1+ -2 0 .5)
(-1 -0.5 0.0 0.5 1.0)

Following mapa-b is the still more general map->, which works for sequences
of objects of any kind. The sequence begins with the object given as the second
argument, the end of the sequence is defined by the function given as the third
argument, and successors are generated by the function given as the fourth argu-
ment. With map-> it is possible to navigate arbitrary data structures, as well as
operate on sequences of numbers. We could define mapa-b in terms of map-> as
follows:

(defun mapa-b (fn a b &optional (step 1))
(map-> fn

a
#’(lambda (x) (> x b))
#’(lambda (x) (+ x step))))
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(defun map0-n (fn n)
(mapa-b fn 0 n))

(defun map1-n (fn n)
(mapa-b fn 1 n))

(defun mapa-b (fn a b &optional (step 1))
(do ((i a (+ i step))

(result nil))
((> i b) (nreverse result))

(push (funcall fn i) result)))

(defun map-> (fn start test-fn succ-fn)
(do ((i start (funcall succ-fn i))

(result nil))
((funcall test-fn i) (nreverse result))

(push (funcall fn i) result)))

(defun mappend (fn &rest lsts)
(apply #’append (apply #’mapcar fn lsts)))

(defun mapcars (fn &rest lsts)
(let ((result nil))
(dolist (lst lsts)
(dolist (obj lst)

(push (funcall fn obj) result)))
(nreverse result)))

(defun rmapcar (fn &rest args)
(if (some #’atom args)

(apply fn args)
(apply #’mapcar

#’(lambda (&rest args)
(apply #’rmapcar fn args))

args)))

Figure 4.6: Mapping functions.
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For efficiency, the built-in mapcan is destructive. It could be duplicated by:

(defun our-mapcan (fn &rest lsts)
(apply #’nconc (apply #’mapcar fn lsts)))

Because mapcan splices together lists with nconc, the lists returned by the first
argument had better be newly created, or the next time we look at them they
might be altered. That’s why nicknames (page 41) was defined as a function
which “builds a list” of nicknames. If it simply returned a list stored elsewhere,
it wouldn’t have been safe to use mapcan. Instead we would have had to splice
the returned lists with append. For such cases, mappend offers a nondestructive
alternative to mapcan.

The next utility, mapcars, is for cases where we want to mapcar a function
over several lists. If we have two lists of numbers and we want to get a single list
of the square roots of both, using raw Lisp we could say

(mapcar #’sqrt (append list1 list2))

but this conses unnecessarily. We append together list1 and list2 only to
discard the result immediately. With mapcars we can get the same result from:

(mapcars #’sqrt list1 list2)

and do no unnecessary consing.
The final function in Figure 4.6 is a version of mapcar for trees. Its name,

rmapcar, is short for “recursive mapcar,” and what mapcar does on flat lists, it
does on trees:

> (rmapcar #’princ ’(1 2 (3 4 (5) 6) 7 (8 9)))
123456789
(1 2 (3 4 (5) 6) 7 (8 9))

Like mapcar, it can take more than one list argument.

> (rmapcar #’+ ’(1 (2 (3) 4)) ’(10 (20 (30) 40)))
(11 (22 (33) 44))

Several of the functions which appear later on ought really to call rmapcar,
including rep on page 324.

To some extent, traditional list mapping functions may be rendered obsolete
by the new series macros introduced in CLTL2. For example,

(mapa-b #’fn a b c)

could be rendered
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(defun readlist (&rest args)
(values (read-from-string

(concatenate ’string "("
(apply #’read-line args)
")"))))

(defun prompt (&rest args)
(apply #’format *query-io* args)
(read *query-io*))

(defun break-loop (fn quit &rest args)
(format *query-io* "Entering break-loop.~%")
(loop
(let ((in (apply #’prompt args)))
(if (funcall quit in)

(return)
(format *query-io* "~A~%" (funcall fn in))))))

Figure 4.7: I/O functions.

(collect (#Mfn (scan-range :from a :upto b :by c)))

However, there is still some call for mapping functions. A mapping function may
in some cases be clearer or more elegant. Some things we could express with
map-> might be difficult to express using series. Finally, mapping functions, as
functions, can be passed as arguments.

4.6 I/O

Figure 4.7 contains three examples of I/O utilities. The need for this kind of
utility varies from program to program. Those in Figure 4.7 are just a represen-
tative sample. The first is for the case where you want users to be able to type in
expressions without parentheses; it reads a line of input and returns it as a list:

> (readlist)
Call me "Ed"
(CALL ME "Ed")

The call to values ensures that we get only one value back (read-from-string
itself returns a second value that is irrelevant in this case).
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The function prompt combines printing a question and reading the answer. It
takes the arguments of format, except the initial stream argument.

> (prompt "Enter a number between ~A and ~A.~%>> " 1 10)
Enter a number between 1 and 10.
>> 3
3

Finally, break-loop is for situations where you want to imitate the Lisp toplevel.
It takes two functions and an &rest argument, which is repeatedly given to
prompt. As long as the second function returns false for the input, the first
function is applied to it. So for example we could simulate the actual Lisp
toplevel with:

> (break-loop #’eval #’(lambda (x) (eq x :q)) ">> ")
Entering break-loop.
>> (+ 2 3)
5
>> :q
:Q

This, by the way, is the reason Common Lisp vendors generally insist on runtime
licenses. If you can call eval at runtime, then any Lisp program can include Lisp.

4.7 Symbols and Strings

Symbols and strings are closely related. By means of printing and reading
functions we can go back and forth between the two representations. Figure 4.8
contains examples of utilities which operate on this border. The first, mkstr,
takes any number of arguments and concatenates their printed representations into
a string:

> (mkstr pi " pieces of " ’pi)
"3.141592653589793 pieces of PI"

Built upon it is symb, which is mostly used for building symbols. It takes one or
more arguments and returns the symbol (creating one if necessary) whose print-
name is their concatenation. It can take as an argument any object which has a
printable representation: symbols, strings, numbers, even lists.

> (symb ’ar "Madi" #\L #\L 0)
|ARMadiLL0|
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(defun mkstr (&rest args)
(with-output-to-string (s)
(dolist (a args) (princ a s))))

(defun symb (&rest args)
(values (intern (apply #’mkstr args))))

(defun reread (&rest args)
(values (read-from-string (apply #’mkstr args))))

(defun explode (sym)
(map ’list #’(lambda (c)

(intern (make-string 1
:initial-element c)))

(symbol-name sym)))

Figure 4.8: Functions which operate on symbols and strings.

After calling mkstr to concatenate all its arguments into a single string, symb
sends the string to intern. This function is Lisp’s traditional symbol-builder: it
takes a string and either finds the symbol which prints as the string, or makes a
new one which does.

Any string can be the print-name of a symbol, even a string containing lower-
case letters or macro characters like parentheses. When a symbol’s name contains
such oddities, it is printed within vertical bars, as above. In source code, such
symbols should either be enclosed in vertical bars, or the offending characters
preceded by backslashes:

> (let ((s (symb ’(a b))))
(and (eq s ’|(A B)|) (eq s ’\(A\ B\))))

T

The next function, reread, is a generalization of symb. It takes a series of
objects, and prints and rereads them. It can return symbols like symb, but it can
also return anything else that read can. Read-macros will be invoked instead of
being treated as part of a symbol’s name, and a:b will be read as the symbol b
in package a, instead of the symbol |a:b| in the current package.1 The more
general function is also pickier: reread will generate an error if its arguments
are not proper Lisp syntax.

1For an introduction to packages, see the Appendix beginning on page 381.
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The last function in Figure 4.8 was predefined in several earlier dialects:
explode takes a symbol and returns a list of symbols made from the characters
in its name.

> (explode ’bomb)
(B O M B)

It is no accident that this function wasn’t included in Common Lisp. If you
find yourself wanting to take apart symbols, you’re probably doing something
inefficient. However, there is a place for this kind of utility in prototypes, if not
in production software.

4.8 Density

If your code uses a lot of new utilities, some readers may complain that it is hard to
understand. People who are not yet very fluent in Lisp will only be used to reading
raw Lisp. In fact, they may not be used to the idea of an extensible language at
all. When they look at a program which depends heavily on utilities, it may seem
to them that the author has, out of pure eccentricity, decided to write the program
in some sort of private language.

All these new operators, it might be argued, make the program harder to read.
One has to understand them all before being able to read the program. To see
why this kind of statement is mistaken, consider the case described on page 41,
in which we want to find the nearest bookshops. If you wrote the program using
find2, someone could complain that they had to understand the definition of this
new utility before they could read your program. Well, suppose you hadn’t used
find2. Then, instead of having to understand the definition of find2, the reader
would have had to understand the definition of find-books, in which the function
of find2 is mixed up with the specific task of finding bookshops. It is no more
difficult to understand find2 than find-books. And here we have only used the
new utility once. Utilities are meant to be used repeatedly. In a real program, it
might be a choice between having to understand find2, and having to understand
three or four specialized search routines. Surely the former is easier.

So yes, reading a bottom-up program requires one to understand all the new
operators defined by the author. But this will nearly always be less work than
having to understand all the code that would have been required without them.

If people complain that using utilities makes your code hard to read, they
probably don’t realize what the code would look like if you hadn’t used them.
Bottom-up programming makes what would otherwise be a large program look
like a small, simple one. This can give the impression that the program doesn’t
do much, and should therefore be easy to read. When inexperienced readers look
closer and find that this isn’t so, they react with dismay.
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We find the same phenomenon in other fields: a well-designed machine may
have fewer parts, and yet look more complicated, because it is packed into a
smaller space. Bottom-up programs are conceptually denser. It may take an effort
to read them, but not as much as it would take if they hadn’t been written that way.

There is one case in which you might deliberately avoid using utilities: if
you had to write a small program to be distributed independently of the rest of
your code. A utility usually pays for itself after two or three uses, but in a small
program, a utility might not be used enough to justify including it.
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Returning Functions

The previous chapter showed how the ability to pass functions as arguments leads
to greater possibilities for abstraction. The more we can do to functions, the more
we can take advantage of these possibilities. By defining functions to build and
return new functions, we can magnify the effect of utilities which take functions
as arguments.

The utilities in this chapter operate on functions. It would be more natural, at
least in Common Lisp, to write many of them to operate on expressions—that is,
as macros. A layer of macros will be superimposed on some of these operators
in Chapter 15. However, it is important to know what part of the task can be
done with functions, even if we will eventually call these functions only through
macros.

5.1 Common Lisp Evolves

Common Lisp originally provided several pairs of complementary functions. The
functions remove-if and remove-if-not make one such pair. If pred is a
predicate of one argument, then

(remove-if-not #’pred lst)

is equivalent to

(remove-if #’(lambda (x) (not (pred x))) lst)

61
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By varying the function given as an argument to one, we can duplicate the
effect of the other. In that case, why have both? CLTL2 includes a new function
intended for cases like this: complement takes a predicate p and returns a function
which always returns the opposite value. When p returns true, the complement
returns false, and vice versa. Now we can replace

(remove-if-not #’pred lst)

with the equivalent

(remove-if (complement #’pred) lst)

With complement, there is little justification for continuing to use the -if-not
functions.1 Indeed, CLTL2 (p. 391) says that their use is now deprecated. If they
remain in Common Lisp, it will only be for the sake of compatibility.

The new complement operator is the tip of an important iceberg: functions
which return functions. This has long been an important part of the idiom of
Scheme. Scheme was the first Lisp to make functions lexical closures, and it is
this which makes it interesting to have functions as return values.

It’s not that we couldn’t return functions in a dynamically scoped Lisp. The
following function would work the same under dynamic or lexical scope:

(defun joiner (obj)
(typecase obj
(cons #’append)
(number #’+)))

It takes an object and, depending on its type, returns a function to add such objects
together. We could use it to define a polymorphic join function that worked for
numbers or lists:

(defun join (&rest args)
(apply (joiner (car args)) args))

However, returning constant functions is the limit of what we can do with dynamic
scope. What we can’t do (well) is build functions at runtime; joiner can return
one of two functions, but the two choices are fixed.

On page 18 we saw another function for returning functions, which relied on
lexical scope:

(defun make-adder (n)
#’(lambda (x) (+ x n)))

1Except perhaps remove-if-not, which is used more often than remove-if.
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Calling make-adder will yield a closure whose behavior depends on the value
originally given as an argument:

> (setq add3 (make-adder 3))
#<Interpreted-Function BF1356>
> (funcall add3 2)
5

Under lexical scope, instead of merely choosing among a group of constant func-
tions, we can build new closures at runtime. With dynamic scope this technique
is impossible.2 If we consider how complementwould be written, we see that it
too must return a closure:

(defun complement (fn)
#’(lambda (&rest args) (not (apply fn args))))

The function returned by complement uses the value of the parameter fn when
complement was called. So instead of just choosing from a group of constant
functions, complement can custom-build the inverse of any function:

> (remove-if (complement #’oddp) ’(1 2 3 4 5 6))
(1 3 5)

Being able to pass functions as arguments is a powerful tool for abstraction.
The ability to write functions which return functions allows us to make the most
of it. The remaining sections present several examples of utilities which return
functions.

5.2 Orthogonality

An orthogonal language is one in which you can express a lot by combining a small
number of operators in a lot of different ways. Toy blocks are very orthogonal; a
plastic model kit is hardly orthogonal at all. The main advantage of complement
is that it makes a language more orthogonal. Before complement, Common
Lisp had pairs of functions like remove-if and remove-if-not, subst-if and
subst-if-not, and so on. With complementwe can do without half of them.

The setf macro also improves Lisp’s orthogonality. Earlier dialects of Lisp
would often have pairs of functions for reading and writing data. With property-
lists, for example, there would be one function to establish properties and another
function to ask about them. In Common Lisp, we have only the latter, get. To

2Under dynamic scope, we could write something like make-adder, but it would hardly ever
work. The binding of n would be determined by the environment in which the returned function was
eventually called, and we might not have any control over that.
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(defvar *!equivs* (make-hash-table))

(defun ! (fn)
(or (gethash fn *!equivs*) fn))

(defun def! (fn fn!)
(setf (gethash fn *!equivs*) fn!))

Figure 5.1: Returning destructive equivalents.

establish a property, we use get in combination with setf:

(setf (get ’ball ’color) ’red)

We may not be able to make Common Lisp smaller, but we can do something
almost as good: use a smaller subset of it. Can we define any new operatorswhich
would, like complement and setf, help us toward this goal? There is at least
one other way in which functions are grouped in pairs. Many functions also come
in a destructive version: remove-if and delete-if, reverse and nreverse,
append and nconc. By defining an operator to return the destructive counterpart
of a function, we would not have to refer to the destructive functions directly.

Figure 5.1 contains code to support the notion of destructive counterparts.
The global hash-table *!equivs*maps functions to their destructive equivalents;
! returns destructive equivalents; and def! sets them. The name of the ! (bang)
operator comes from the Scheme convention of appending ! to the names of
functions with side-effects. Now once we have defined

(def! #’remove-if #’delete-if)

then instead of

(delete-if #’oddp lst)

we would say

(funcall (! #’remove-if) #’oddp lst)

Here the awkwardness of Common Lisp masks the basic elegance of the idea,
which would be more visible in Scheme:

((! remove-if) oddp lst)
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(defun memoize (fn)
(let ((cache (make-hash-table :test #’equal)))
#’(lambda (&rest args)

(multiple-value-bind (val win) (gethash args cache)
(if win

val
(setf (gethash args cache)

(apply fn args)))))))

Figure 5.2: Memoizing utility.

As well as greater orthogonality, the ! operator brings a couple of other bene-
fits. It makes programs clearer, because we can see immediately that (! #’foo)
is the destructive equivalent of foo. Also, it gives destructive operations a dis-
tinct, recognizable form in source code, which is good because they should receive
special attention when we are searching for a bug.

Since the relation between a function and its destructive counterpart will
usually be known before runtime, it would be most efficient to define ! as a
macro, or even provide a read macro for it.

5.3 Memoizing

If some function is expensive to compute, and we expect sometimes to make the
same call more than once, then it pays to memoize: to cache the return values of
all the previous calls, and each time the function is about to be called, to look first
in the cache to see if the value is already known.

Figure 5.2 contains a generalized memoizing utility. We give a function to
memoize, and it returns an equivalent memoized version—a closure containing a
hash-table in which to store the results of previous calls.

> (setq slowid (memoize #’(lambda (x) (sleep 5) x)))
#<Interpreted-Function C38346>
> (time (funcall slowid 1))
Elapsed Time = 5.15 seconds
1
> (time (funcall slowid 1))
Elapsed Time = 0.00 seconds
1

With a memoized function, repeated calls are just hash-table lookups. There is
of course the additional expense of a lookup on each initial call, but since we
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(defun compose (&rest fns)
(if fns

(let ((fn1 (car (last fns)))
(fns (butlast fns)))

#’(lambda (&rest args)
(reduce #’funcall fns

:from-end t
:initial-value (apply fn1 args))))

#’identity))

Figure 5.3: An operator for functional composition.

would only memoize a function that was sufficiently expensive to compute, it’s
reasonable to assume that this cost is insignificant in comparison.

Though adequate for most uses, this implementation of memoize has several
limitations. It treats calls as identical if they have equal argument lists; this could
be too strict if the function had keyword parameters. Also, it is intended only for
single-valued functions, and cannot store or return multiple values.

5.4 Composing Functions

The complement of a function f is denoted ∼f. Section 5.1 showed that closures
make it possible to define ∼ as a Lisp function. Another common operation on
functions is composition, denoted by the operator ◦. If f and g are functions, then
f◦g is also a function, and f◦g(x) = f (g(x)). Closures also make it possible to
define ◦ as a Lisp function.

Figure 5.3 defines a compose function which takes any number of functions
and returns their composition. For example

(compose #’list #’1+)

returns a function equivalent to

#’(lambda (x) (list (1+ x)))

All the functions given as arguments to compose must be functions of one argu-
ment, except the last. On the last function there are no restrictions, and whatever◦
arguments it takes, so will the function returned by compose:

> (funcall (compose #’1+ #’find-if) #’oddp ’(2 3 4))
4
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(defun fif (if then &optional else)
#’(lambda (x)

(if (funcall if x)
(funcall then x)
(if else (funcall else x)))))

(defun fint (fn &rest fns)
(if (null fns)

fn
(let ((chain (apply #’fint fns)))

#’(lambda (x)
(and (funcall fn x) (funcall chain x))))))

(defun fun (fn &rest fns)
(if (null fns)

fn
(let ((chain (apply #’fun fns)))

#’(lambda (x)
(or (funcall fn x) (funcall chain x))))))

Figure 5.4: More function builders.

Since not is a Lisp function, complement is a special case of compose. It could
be defined as:

(defun complement (pred)
(compose #’not pred))

We can combine functions in other ways than by composing them. For
example, we often see expressions like

(mapcar #’(lambda (x)
(if (slave x)

(owner x)
(employer x)))

people)

We could define an operator to build functions like this one automatically. Using
fif from Figure 5.4, we could get the same effect with:

(mapcar (fif #’slave #’owner #’employer)
people)
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Figure 5.4 contains several other constructors for commonly occurring types
of functions. The second, fint, is for cases like this:

(find-if #’(lambda (x)
(and (signed x) (sealed x) (delivered x)))

docs)

The predicate given as the second argument to find-if defines the intersection of
the three predicates called within it. With fint, whose name stands for “function
intersection,” we can say:

(find-if (fint #’signed #’sealed #’delivered) docs)

We can define a similar operator to return the union of a set of predicates. The
function fun is like fint but uses or instead of and.

5.5 Recursion on Cdrs

Recursive functions are so important in Lisp programs that it would be worth
having utilities to build them. This section and the next describe functions which
build the two most common types. In Common Lisp, these functions are a little
awkward to use. Once we get into the subject of macros, we will see how to
put a more elegant facade on this machinery. Macros for building recursers are
discussed in Sections 15.2 and 15.3.

Repeated patterns in a program are a sign that it could have been written at a
higher level of abstraction. What pattern is more commonly seen in Lisp programs
than a function like this:

(defun our-length (lst)
(if (null lst)

0
(1+ (our-length (cdr lst)))))

or this:

(defun our-every (fn lst)
(if (null lst)

t
(and (funcall fn (car lst))

(our-every fn (cdr lst)))))

Structurally these two functions have a lot in common. They both operate recur-
sively on successive cdrs of a list, evaluating the same expression on each step,



5.5 RECURSION ON CDRS 69

(defun lrec (rec &optional base)
(labels ((self (lst)

(if (null lst)
(if (functionp base)

(funcall base)
base)

(funcall rec (car lst)
#’(lambda ()

(self (cdr lst)))))))
#’self))

Figure 5.5: Function to define flat list recursers.

except in the base case, where they return a distinct value. This pattern appears
so frequently in Lisp programs that experienced programmers can read and repro-
duce it without stopping to think. Indeed, the lesson is so quickly learned, that
the question of how to package the pattern in a new abstraction does not arise.

However, a pattern it is, all the same. Instead of writing these functions out
by hand, we should be able to write a function which will generate them for us.
Figure 5.5 contains a function-builder called lrec (“list recurser”) which should
be able to generate most functions that recurse on successive cdrs of a list.

The first argument to lrec must be a function of two arguments: the current
car of the list, and a function which can be called to continue the recursion. Using
lrec we could express our-length as:

(lrec #’(lambda (x f) (1+ (funcall f))) 0)

To find the length of the list, we don’t need to look at the elements, or stop part-
way, so the object x is always ignored, and the function f always called. However,
we need to take advantage of both possibilities to express our-every, for e.g.
oddp:3

(lrec #’(lambda (x f) (and (oddp x) (funcall f))) t)

The definition of lrec uses labels to build a local recursive function called
self. In the recursive case the function rec is passed two arguments, the current
car of the list, and a function embodying the recursive call. In functions like
our-every, where the recursive case is an and, if the first argument returns false
wewant to stop right there. Whichmeans that the argument passed in the recursive

3In one widely used Common Lisp, functionp erroneously returns true for t and nil. In that
implementation it won’t work to give either as the second argument to lrec.
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; copy-list
(lrec #’(lambda (x f) (cons x (funcall f))))

; remove-duplicates
(lrec #’(lambda (x f) (adjoin x (funcall f))))

; find-if, for some function fn
(lrec #’(lambda (x f) (if (fn x) x (funcall f))))

; some, for some function fn
(lrec #’(lambda (x f) (or (fn x) (funcall f))))

Figure 5.6: Functions expressed with lrec.

case must not be a value but a function, which we can call (if we want) in order to
get a value.

Figure 5.6 shows some existing Common Lisp functions defined with lrec.4
Calling lrec will not always yield the most efficient implementation of a given
function. Indeed, lrec and the other recurser generators to be defined in this
chapter tend to lead one away from tail-recursive solutions. For this reason they
are best suited for use in initial versions of a program, or in parts where speed is
not critical.

5.6 Recursion on Subtrees

There is another recursive pattern commonly found in Lisp programs: recursion
on subtrees. This pattern is seen in cases where you begin with a possibly nested
list, and want to recurse down both its car and its cdr.

The Lisp list is a versatile structure. Lists can represent, among other things,
sequences, sets, mappings, arrays, and trees. There are several different ways to
interpret a list as a tree. The most common is to regard the list as a binary tree
whose left branch is the car and whose right branch is the cdr. (In fact, this is
usually the internal representation of lists.) Figure 5.7 shows three examples of
lists and the trees they represent. Each internal node in such a tree corresponds
to a dot in the dotted-pair representation of the list, so the tree structure may be

4In some implementations, you may have to set *print-circle* to t before these functions can
be displayed.
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(a . b) (a b c) (a b (c d))

Figure 5.7: Lists as trees.

easier to interpret if the lists are considered in that form:

(a b c) = (a . (b . (c . nil)))
(a b (c d)) = (a . (b . ((c . (d . nil)) . nil)))

Any list can be interpreted as a binary tree. Hence the distinction between pairs
of Common Lisp functions like copy-list and copy-tree. The former copies
a list as a sequence—if the list contains sublists, the sublists, being mere elements
in the sequence, are not copied:

> (setq x ’(a b)
listx (list x 1))

((A B) 1)
> (eq x (car (copy-list listx)))
T

In contrast, copy-tree copies a list as a tree—sublists are subtrees, and so must
also be copied:

> (eq x (car (copy-tree listx)))
NIL

We could define a version of copy-tree as follows:
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(defun our-copy-tree (tree)
(if (atom tree)

tree
(cons (our-copy-tree (car tree))

(if (cdr tree) (our-copy-tree (cdr tree))))))

This definition turns out to be one instance of a common pattern. (Some of the
following functions are written a little oddly in order to make the pattern obvious.)
Consider for example a utility to count the number of leaves in a tree:

(defun count-leaves (tree)
(if (atom tree)

1
(+ (count-leaves (car tree))

(or (if (cdr tree) (count-leaves (cdr tree)))
1))))

A tree has more leaves than the atoms you can see when it is represented as a list:

> (count-leaves ’((a b (c d)) (e) f))
10

The leaves of a tree are all the atoms you can see when you look at the tree in
its dotted-pair representation. In dotted-pair notation, ((a b (c d)) (e) f)
would have four nils that aren’t visible in the list representation (one for each
pair of parentheses) so count-leaves returns 10.

In the last chapter we defined several utilities which operate on trees. For
example, flatten (page 47) takes a tree and returns a list of all the atoms in it.
That is, if you give flatten a nested list, you’ll get back a list that looks the same
except that it’s missing all but the outermost pair of parentheses:

> (flatten ’((a b (c d)) (e) f ()))
(A B C D E F)

This function could also be defined (somewhat inefficiently) as follows:

(defun flatten (tree)
(if (atom tree)

(mklist tree)
(nconc (flatten (car tree))

(if (cdr tree) (flatten (cdr tree))))))

Finally, consider rfind-if, a recursive version of find-if which works on
trees as well as flat lists:
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(defun rfind-if (fn tree)
(if (atom tree)

(and (funcall fn tree) tree)
(or (rfind-if fn (car tree))

(if (cdr tree) (rfind-if fn (cdr tree))))))

To generalize find-if for trees, we have to decide whether we want to search
for just leaves, or for whole subtrees. Our rfind-if takes the former approach, ◦
so the caller can assume that the function given as the first argument will only be
called on atoms:

> (rfind-if (fint #’numberp #’oddp) ’(2 (3 4) 5))
3

How similar in form are these four functions, copy-tree, count-leaves,
flatten, and rfind-if. Indeed, they’re all instances of an archetypal function
for recursion on subtrees. As with recursion on cdrs, we need not leave this
archetype to float vaguely in the background—we can write a function to generate
instances of it.

To get at the archetype itself, let’s look at these functions and see what’s not
pattern. Essentially our-copy-tree is two facts:

1. In the base case it returns its argument.

2. In the recursive case, it applies cons to the recursions down the left (car)
and right (cdr) subtrees.

We should thus be able to express it as a call to a builder with two arguments:

(ttrav #’cons #’identity)

A definition of ttrav (“tree traverser”) is shown in Figure 5.8. Instead of
passing one value in the recursive case, we pass two, one for the left subtree and
one for the right. If the base argument is a function it will be called on the current
leaf. In flat list recursion, the base case is always nil, but in tree recursion the
base case could be an interesting value, and we might want to use it.

With ttrav we could express all the preceding functions except rfind-if.
(They are shown in Figure 5.9.) To define rfind-ifwe need a more general tree
recursion builder which gives us control over when, and if, the recursive calls are
made. As the first argument to ttravwe gave a functionwhich took the results of
the recursive calls. For the general case, we want to use instead a function which
takes two closures representing the calls themselves. Then we can write recursers
which only traverse as much of the tree as they want to.
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(defun ttrav (rec &optional (base #’identity))
(labels ((self (tree)

(if (atom tree)
(if (functionp base)

(funcall base tree)
base)

(funcall rec (self (car tree))
(if (cdr tree)

(self (cdr tree)))))))
#’self))

Figure 5.8: Function for recursion on trees.

; our-copy-tree
(ttrav #’cons)

; count-leaves
(ttrav #’(lambda (l r) (+ l (or r 1))) 1)

; flatten
(ttrav #’nconc #’mklist)

Figure 5.9: Functions expressed with ttrav.

Functions built by ttrav always traverse awhole tree. That’sfine for functions
like count-leaves or flatten, which have to traverse the whole tree anyway.
But we want rfind-if to stop searching as soon as it finds what it’s looking for.
It must be built by the more general trec, shown in Figure 5.10. The second arg
to trec should be a function of three arguments: the current object and the two
recursers. The latter two will be closures representing the recursions down the
left and right subtrees. With trec we would define flatten as:

(trec #’(lambda (o l r) (nconc (funcall l) (funcall r)))
#’mklist)

Now we can also express rfind-if for e.g. oddp as:

(trec #’(lambda (o l r) (or (funcall l) (funcall r)))
#’(lambda (tree) (and (oddp tree) tree)))



5.7 WHEN TO BUILD FUNCTIONS 75

(defun trec (rec &optional (base #’identity))
(labels
((self (tree)

(if (atom tree)
(if (functionp base)

(funcall base tree)
base)

(funcall rec tree
#’(lambda ()

(self (car tree)))
#’(lambda ()

(if (cdr tree)
(self (cdr tree))))))))

#’self))

Figure 5.10: Function for recursion on trees.

5.7 When to Build Functions

Expressing functions by calls to constructors instead of sharp-quoted lambda-
expressions could, unfortunately, entail unnecessary work at runtime. A sharp-
quoted lambda-expression is a constant, but a call to a constructor functionwill be
evaluated at runtime. If we really have to make this call at runtime, it might not
be worth using constructor functions. However, at least some of the time we can
call the constructor beforehand. By using #., the sharp-dot read macro, we can
have the new functions built at read-time. So long as compose and its arguments
are defined when this expression is read, we could say, for example,

(find-if #.(compose #’oddp #’truncate) lst)

Then the call to compose would be evaluated by the reader, and the resulting
function inserted as a constant into our code. Since both oddp and truncate are
built-in, it would safe to assume that we can evaluate the compose at read-time,
so long as compose itself were already loaded.

In general, composing and combining functions is more easily and efficiently
done with macros. This is particularly true in Common Lisp, with its separate
name-space for functions. After introducing macros, we will in Chapter 15 cover
much of the ground we covered here, but in a more luxurious vehicle.
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Functions as Representation

Generally, data structures are used to represent. An array could represent a
geometric transformation; a tree could represent a hierarchy of command; a graph
could represent a rail network. In Lisp we can sometimes use closures as a
representation. Within a closure, variable bindings can store information, and can
also play the role that pointers play in constructing complex data structures. By
making a group of closures which share bindings, or can refer to one another, we
can create hybrid objects which combine the advantages of data structures and
programs.

Beneath the surface, shared bindings are pointers. Closures just bring us the
convenience of dealingwith themat a higher level of abstraction. By using closures
to represent something we would otherwise represent with static data structures,
we can often expect substantial improvements in elegance and efficiency.

6.1 Networks

Closures have three useful properties: they are active, they have local state, and
we can make multiple instances of them. Where could we use multiple copies
of active objects with local state? In applications involving networks, among
others. In many cases we can represent nodes in a network as closures. As well as
having its own local state, a closure can refer to another closure. Thus a closure
representing a node in a network can know of several other nodes (closures) to
which it must send its output. This means that we may be able to translate some
networks straight into code.

76
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> (run-node ’people)
Is the person a man?
>> yes
Is he living?
>> no
Was he American?
>> yes
Is he on a coin?
>> yes
Is the coin a penny?
>> yes
LINCOLN

Figure 6.1: Session of twenty questions.

In this section and the next we will look at two ways to traverse a network.
First we will follow the traditional approach, with nodes defined as structures, and
separate code to traverse the network. Then in the next section we’ll show how to
build the same program from a single abstraction.

As an example, we will use about the simplest application possible: one of
those programs that play twenty questions. Our network will be a binary tree.
Each non-leaf node will contain a yes/no question, and depending on the answer
to the question, the traversal will continue down the left or right subtree. Leaf
nodes will contain return values. When the traversal reaches a leaf node, its value
will be returned as the value of the traversal. A session with this program might
look as in Figure 6.1.

The traditional way to begin would be to define some sort of data structure to
represent nodes. A node is going to have to know several things: whether it is a
leaf; if so, which value to return, and if not, which question to ask; and where to
go depending on the answer. A sufficient data structure is defined in Figure 6.2.
It is designed for minimal size. The contents field will contain either a question
or a return value. If the node is not a leaf, the yes and no fields will tell where to
go depending on the answer to the question; if the node is a leaf, we will know it
because these fields are empty. The global *nodes*will be a hash-table in which
nodes are indexed by name. Finally, defnode makes a new node (of either type)
and stores it in *nodes*. Using these materials we could define the first node of
our tree:

(defnode ’people "Is the person a man?"
’male ’female)
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(defstruct node contents yes no)

(defvar *nodes* (make-hash-table))

(defun defnode (name conts &optional yes no)
(setf (gethash name *nodes*)

(make-node :contents conts
:yes yes
:no no)))

Figure 6.2: Representation and definition of nodes.

(defnode ’people "Is the person a man?" ’male ’female)

(defnode ’male "Is he living?" ’liveman ’deadman)

(defnode ’deadman "Was he American?" ’us ’them)

(defnode ’us "Is he on a coin?" ’coin ’cidence)

(defnode ’coin "Is the coin a penny?" ’penny ’coins)

(defnode ’penny ’lincoln)

Figure 6.3: Sample network.

Figure 6.3 shows as much of the network as we need to produce the transcript in
Figure 6.1.

Now all we need to do is write a function to traverse this network, printing
out the questions and following the indicated path. This function, run-node, is
shown in Figure 6.4. Given a name, we look up the corresponding node. If it is
not a leaf, the contents are asked as a question, and depending on the answer,
we continue traversing at one of two possible destinations. If the node is a leaf,
run-node just returns its contents. With the network defined in Figure 6.3, this
function produces the output shown in Figure 6.1.
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(defun run-node (name)
(let ((n (gethash name *nodes*)))
(cond ((node-yes n)

(format t "~A~%>> " (node-contents n))
(case (read)
(yes (run-node (node-yes n)))
(t (run-node (node-no n)))))

(t (node-contents n)))))

Figure 6.4: Function for traversing networks.

(defvar *nodes* (make-hash-table))

(defun defnode (name conts &optional yes no)
(setf (gethash name *nodes*)

(if yes
#’(lambda ()

(format t "~A~%>> " conts)
(case (read)
(yes (funcall (gethash yes *nodes*)))
(t (funcall (gethash no *nodes*)))))

#’(lambda () conts))))

Figure 6.5: A network compiled into closures.

6.2 Compiling Networks

In the preceding section wewrote a network program as it might have been written
in any language. Indeed, the program is so simple that it seems odd to think that
we could write it any other way. But we can—in fact, we can write it much more
simply.

The code in Figure 6.5 illustrates this point. It’s all we really need to run our
network. Instead of having nodes as data structures and a separate function to
traverse them, we represent the nodes as closures. The data formerly contained in
the structures gets stored in variable bindings within the closures. Now there is no
need for run-node; it is implicit in the nodes themselves. To start the traversal,
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(defvar *nodes* nil)

(defun defnode (&rest args)
(push args *nodes*)
args)

(defun compile-net (root)
(let ((node (assoc root *nodes*)))
(if (null node)

nil
(let ((conts (second node))

(yes (third node))
(no (fourth node)))

(if yes
(let ((yes-fn (compile-net yes))

(no-fn (compile-net no)))
#’(lambda ()

(format t "~A~%>> " conts)
(funcall (if (eq (read) ’yes)

yes-fn
no-fn))))

#’(lambda () conts))))))

Figure 6.6: Compilation with static references.

we just funcall the node at which we want to begin:

(funcall (gethash ’people *nodes*))
Is the person a man?
>>

From then on, the transcriptwill be just as it waswith the previous implementation.
By representing the nodes as closures, we are able to transform our twenty-

questions network entirely into code. As it is, the code will have to look up the
node functions by name at runtime. However, if we know that the network is
not going to be redefined on the fly, we can add a further enhancement: we can
have node functions call their destinations directly, without having to go through
a hash-table.

Figure 6.6 contains a new version of the program. Now *nodes* is a dis-
posable list instead of a hash-table. All the nodes are defined with defnode as
before, but no closures are generated at this point. After all the nodes have been
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defined, we call compile-net to compile a whole network at once. This function
recursively works its way right down to the leaves of the tree, and on the way
back up, returns at each step the node/function for each of the two subtrees.1 So
now each node will have a direct handle on its two destinations, instead of having
only their names. When the original call to compile-net returns, it will yield a
function representing the portion of the network we asked to have compiled.

> (setq n (compile-net ’people))
#<Compiled-Function BF3C06>
> (funcall n)
Is the person a man?
>>

Notice that compile-net compiles in both senses. It compiles in the general
sense, by translating the abstract representation of the network into code. More-
over, if compile-net itself is compiled, it will return compiled functions. (See
page 25.)

After compiling the network, wewill no longer need the list made by defnode.
It can be cut loose (e.g. by setting *nodes* to nil) and reclaimed by the garbage
collector.

6.3 Looking Forward

Many programs involving networks can be implemented by compiling the nodes
into closures. Closures are data objects, and they can be used to represent things
just as structures can. Doing so requires some unconventional thinking, but the
rewards are faster and more elegant programs.

Macros help substantially when we use closures as a representation. “To
represent with closures” is another way of saying “to compile,” and since macros
do their work at compile-time, they are a natural vehicle for this technique.
After macros have been introduced, Chapters 23 and 24 will present much larger
programs based on the strategy used here.

1This version assumes that the network is a tree, which it must be in this application.
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Macros

Lisp’s macro facility allows you to define operators that are implemented by
transformation. The definition of a macro is essentially a function that generates
Lisp code—a program that writes programs. From these small beginnings arise
great possibilities, and also unexpected hazards. Chapters 7–10 form a tutorial
on macros. This chapter explains how macros work, gives techniques for writing
and testing them, and looks at the issue of macro style.

7.1 How Macros Work

Since macros can be called and return values, they tend to be associated with func-
tions. Macro definitions sometimes resemble function definitions, and speaking
informally, people call do, which is actually a macro, a “built-in function.” But
pushing the analogy too far can be a source of confusion. Macros work differently
from normal functions, and knowing how and why macros are different is the
key to using them correctly. A function produces results, but a macro produces
expressions—which, when evaluated, produce results.

The best way to begin is to move straight into an example. Suppose we want
to write a macro nil!, which sets its argument to nil. We want (nil! x) to
have the same effect as (setq x nil). We do it by defining nil! as a macro
which turns instances of the first form into instances of the second.

> (defmacro nil! (var)
(list ’setq var nil))

NIL!

82
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Paraphrased in English, this definition tells Lisp: “Whenever you see an expression
of the form (nil! var), turn it into one of the form (setq var nil) before
evaluating it.”

The expression generated by themacrowill be evaluated in place of the original
macro call. A macro call is a list whose first element is the name of a macro.
What happens when we type the macro call (nil! x) into the toplevel? Lisp
notices that nil! is the name of a macro, and

1. builds the expression specified by the definition above, then

2. evaluates that expression in place of the original macro call.

The step of building the new expression is called macroexpansion. Lisp looks
up the definition of nil!, which shows how to construct a replacement for the
macro call. The definition of nil! is applied like a function to the expressions
given as arguments in the macro call. It returns a list of three elements: setq,
the expression given as the argument to the macro, and nil. In this case, the
argument to nil! is x, and the macroexpansion is (setq x nil).

After macroexpansion comes a second step, evaluation. Lisp evaluates the
macroexpansion (setq x nil) as if you had typed that in the first place. Evalu-
ation does not always come immediately after expansion, as it does at the toplevel.
A macro call occurring in the definition of a function will be expanded when the
function is compiled, but the expansion—or the object code which results from
it—won’t be evaluated until the function is called.

Many of the difficulties you might encounter with macros can be avoided by
maintaining a sharp distinction between macroexpansion and evaluation. When
writingmacros, knowwhich computations are performedduringmacroexpansion,
and which during evaluation, for the two steps generally operate on objects of
two different sorts. The macroexpansion step deals with expressions, and the
evaluation step deals with their values.

Sometimesmacroexpansion can bemore complicated than it was in the case of
nil!. The expansion of nil! was a call to a built-in special form, but sometimes
the expansion of a macro will be yet another macro call, like a Russian doll which
contains another doll inside it. In such cases, macroexpansion simply continues
until it arrives at an expression which is no longer a macro call. The process can
take arbitrarily many steps, so long as it terminates eventually.

Many languages offer some form of macro, but Lisp macros are singularly
powerful. When a file of Lisp is compiled, a parser reads the source code and sends
its output to the compiler. Here’s the stroke of genius: the output of the parser
consists of lists of Lisp objects. With macros, we can manipulate the program
while it’s in this intermediate form between parser and compiler. If necessary,
these manipulations can be very extensive. A macro generating its expansion has
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at its disposition the full power of Lisp. Indeed, a macro is really a Lisp function—
one which happens to return expressions. The definition of nil! contains a single
call to list, but another macro might invoke a whole subprogram to generate its
expansion.

Being able to changewhat the compiler sees is almost like being able to rewrite
it. We can add any construct to the language that we can define by transformation
into existing constructs.

7.2 Backquote

Backquote is a special version of quote which can be used to create templates
for Lisp expressions. One of the most common uses of backquote is in macro
definitions.

The backquote character, ‘, is so named because it resembles a regular quote,
’, reversed. When backquote alone is affixed to an expression, it behaves just like
quote:

‘(a b c) is equal to ’(a b c).

Backquote becomes useful only when it appears in combination with comma,
,, and comma-at, ,@. If backquote makes a template, comma makes a slot within
a template. A backquoted list is equivalent to a call to list with the elements
quoted. That is,

‘(a b c) is equal to (list ’a ’b ’c).

Within the scope of a backquote, a comma tells Lisp: “turn off the quoting.”
When a comma appears before one of the elements of the list, it has the effect of
cancelling out the quote that would have been put there. So

‘(a ,b c ,d) is equal to (list ’a b ’c d).

Instead of the symbol b, its value is inserted into the resulting list. Commas work
no matter how deeply they appear within a nested list,

> (setq a 1 b 2 c 3)
3
> ‘(a ,b c)
(A 2 C)
> ‘(a (,b c))
(A (2 C))
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and they may even appear within quotes, or within quoted sublists:

> ‘(a b ,c (’,(+ a b c)) (+ a b) ’c ’((,a ,b)))
(A B 3 (’6) (+ A B) ’C ’((1 2)))

One comma counteracts the effect of one backquote, so commas must match
backquotes. Say that a comma is surrounded by a particular operator if the operator
is prepended to the comma, or prepended to an expression which contains it. In
‘(,a ,(b ‘,c))), for example, the last comma is surrounded by one comma
and two backquotes. The general rule is: a comma surrounded by n commas must
be surrounded by at least n+1 backquotes. An obvious corollary is that commas
may not appear outside of a backquoted expression. Backquotes and commas can
be nested, so long as they obey the rule above. Any of the following expressions
would generate an error if typed into the toplevel:

,x ‘(a ,,b c) ‘(a ,(b ,c) d) ‘(,,‘a)

Nested backquotes are only likely to be needed in macro-defining macros. Both
topics are discussed in Chapter 16.

Backquote is usually used for making lists.1 Any list generated by backquote
can also be generated by using list and regular quotes. The advantage of
backquote is just that it makes expressions easier to read, because a backquoted
expression resembles the expression it will produce. In the previous section we
defined nil! as:

(defmacro nil! (var)
(list ’setq var nil))

With backquote the same macro can be defined as:

(defmacro nil! (var)
‘(setq ,var nil))

which in this case is not all that different. The longer the macro definition,
however, the more important it is to use backquote. Figure 7.1 contains two
possible definitions of nif, a macro which does a three-way numeric if.2

The first argument should evaluate to a number. Then the second, third, or
fourth argument is evaluated, depending on whether the first was positive, zero,
or negative:

> (mapcar #’(lambda (x)
(nif x ’p ’z ’n))

’(0 2.5 -8))
(Z P N)
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With backquote:

(defmacro nif (expr pos zero neg)
‘(case (truncate (signum ,expr))

(1 ,pos)
(0 ,zero)
(-1 ,neg)))

Without backquote:

(defmacro nif (expr pos zero neg)
(list ’case

(list ’truncate (list ’signum expr))
(list 1 pos)
(list 0 zero)
(list -1 neg)))

Figure 7.1: A macro defined with and without backquote.

The two definitions in Figure 7.1 define the same macro, but the first uses
backquote, while the second builds its expansion by explicit calls to list. From
the first definition it’s easy to see that (nif x ’p ’z ’n), for example, expands
into

(case (truncate (signum x))
(1 ’p)
(0 ’z)
(-1 ’n))

because the body of the macro definition looks just like the expansion it generates.
To understand the second version, without backquote, you have to trace in your
head the building of the expansion.

Comma-at, ,@, is a variant of comma. It behaves like comma, with one
difference: instead of merely inserting the value of the expression to which it
is affixed, as comma does, comma-at splices it. Splicing can be thought of as
inserting while removing the outermost level of parentheses:

> (setq b ’(1 2 3))
(1 2 3)

1Backquote can also be used to create vectors, but this is rarely done in macro definitions.
2This macro is defined a little oddly to avoid using gensyms. A better definition is given on

page 150.



7.2 BACKQUOTE 87

> ‘(a ,b c)
(A (1 2 3) C)
> ‘(a ,@b c)
(A 1 2 3 C)

The comma causes the list (1 2 3) to be inserted in place of b, while the comma-
at causes the elements of the list to be inserted there. There are some additional
restrictions on the use of comma-at:

1. In order for its argument to be spliced, comma-at must occur within a
sequence. It’s an error to say something like ‘,@b because there is nowhere
to splice the value of b.

2. The object to be spliced must be a list, unless it occurs last. The expression
‘(a ,@1)will evaluate to (a . 1), but attempting to splice an atom into
the middle of a list, as in ‘(a ,@1 b), will cause an error.

Comma-at tends to be used in macros which take an indeterminate number of
arguments and pass them on to functions or macros which also take an indetermi-
nate number of arguments. This situation commonly arises when implementing
implicit blocks. CommonLisp has several operators for grouping code into blocks,
including block, tagbody, and progn. These operators rarely appear directly in
source code; they are more often implicit—that is, hidden by macros.

An implicit block occurs in any built-in macro which can have a body of
expressions. Both let and cond provide implicit progn, for example. The
simplest built-in macro to do so is probably when:

(when (eligible obj)
(do-this)
(do-that)
obj)

If (eligible obj) returns true, the remaining expressionswill be evaluated, and
the when expression as a whole will return the value of the last. As an example of
the use of comma-at, here is one possible definition for when:

(defmacro our-when (test &body body)
‘(if ,test

(progn
,@body)))

This definition uses an &body parameter (identical to &rest except for its effect
on pretty-printing) to take in an arbitrary number of arguments, and a comma-at
to splice them into a progn expression. In the macroexpansion of the call above,
the three expressions in the body will appear within a single progn:
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(if (eligible obj)
(progn (do-this)

(do-that)
obj))

Most macros for iteration splice their arguments in a similar way.
The effect of comma-at can be achieved without using backquote. The ex-

pression ‘(a ,@b c) is equal to (cons ’a (append b (list ’c))), for ex-
ample. Comma-at exists only to make such expression-generating expressions
more readable.

Macro definitions (usually) generate lists. Although macro expansions could
be built with the function list, backquote list-templates make the task much
easier. Amacro definedwith defmacro and backquotewill superficially resemble
a function defined with defun. So long as you are not misled by the similarity,
backquote makes macro definitions both easier to write and easier to read.

Backquote is so often used in macro definitions that people sometimes think
of backquote as part of defmacro. The last thing to remember about backquote is
that it has a life of its own, separate from its role in macros. You can use backquote
anywhere sequences need to be built:

(defun greet (name)
‘(hello ,name))

7.3 Defining Simple Macros

In programming, the best way to learn is often to begin experimenting as soon
as possible. A full theoretical understanding can come later. Accordingly, this
section presents a way to start writing macros immediately. It works only for a
narrow range of cases, but where applicable it can be applied quite mechanically.
(If you’ve written macros before, you may want to skip this section.)

As an example, we consider how to write a variant of the the built-in Common
Lisp function member. By default member uses eql to test for equality. If you
want to test for membership using eq, you have to say so explicitly:

(member x choices :test #’eq)

If we did this a lot, we might want to write a variant of memberwhich always used
eq. Some earlier dialects of Lisp had such a function, called memq:

(memq x choices)

Ordinarily onewould define memq as an inline function, but for the sake of example
we will reincarnate it as a macro.
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call: (memq x choices)

expansion: (member x choices :test #’eq)

Figure 7.2: Diagram used in writing memq.

The method: Begin with a typical call to the macro you want to define. Write
it down on a piece of paper, and below it write down the expression into which it
ought to expand. Figure 7.2 shows two such expressions. From the macro call,
construct the parameter list for your macro, making up some parameter name for
each of the arguments. In this case there are two arguments, so we’ll have two
parameters, and call them obj and lst:

(defmacro memq (obj lst)

Now go back to the two expressions you wrote down. For each argument in the
macro call, draw a line connecting it with the place it appears in the expansion
below. In Figure 7.2 there are two parallel lines. To write the body of the macro,
turn your attention to the expansion. Start the body with a backquote. Now, begin
reading the expansion expression by expression. Wherever you find a parenthesis
that isn’t part of an argument in the macro call, put one in the macro definition.
So following the backquote will be a left parenthesis. For each expression in the
expansion

1. If there is no line connecting it with the macro call, then write down the
expression itself.

2. If there is a connection to one of the arguments in the macro call, write
down the symbol which occurs in the corresponding position in the macro
parameter list, preceded by a comma.

There is no connection to the first element, member, so we use member itself:

(defmacro memq (obj lst)
‘(member

However, x has a line leading to the first argument in the source expression, so we
use in the macro body the first parameter, with a comma:

(defmacro memq (obj lst)
‘(member ,obj

Continuing in this way, the completed macro definition is:
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(while hungry
(stare-intently)
(meow)
(rub-against-legs))

(do ()
((not hungry))

(stare-intently)
(meow)
(rub-against-legs))

Figure 7.3: Diagram used in writing while.

(defmacro memq (obj lst)
‘(member ,obj ,lst :test #’eq))

So far, we can only write macros which take a fixed number of arguments.
Now suppose we want to write a macro while, which will take a test expression
and some body of code, and loop through the code as long as the test expression
returns true. Figure 7.3 contains an example of a while loop describing the
behavior of a cat.

To write such a macro, we have to modify our technique slightly. As before,
begin by writing down a sample macro call. From that, build the parameter list
of the macro, but where you want to take an indefinite number of arguments,
conclude with an &rest or &body parameter:

(defmacro while (test &body body)

Now write the desired expansion below the macro call, and as before draw lines
connecting the arguments in the macro call to their position in the expansion.
However, when you have a sequence of arguments which are going to be sucked
into a single &rest or &body parameter, treat them as a group, drawing a single
line for the whole sequence. Figure 7.3 shows the resulting diagram.

To write the body of the macro definition, proceed as before along the expan-
sion. As well as the two previous rules, we need one more:

3. If there is a connection from a series of expressions in the expansion to a
series of the arguments in the macro call, write down the corresponding
&rest or &body parameter, preceded by a comma-at.

So the resulting macro definition will be:



7.4 TESTING MACROEXPANSION 91

(defmacro while (test &body body)
‘(do ()

((not ,test))
,@body))

To build a macro which can have a body of expressions, some parameter has to
act as a funnel. Here multiple arguments in the macro call are joined together into
body, and then broken up again when body is spliced into the expansion.

The approach described in this section enables us to write the simplest
macros—those which merely shuffle their parameters. Macros can do a lot
more than that. Section 7.7 will present examples where expansions can’t be
represented as simple backquoted lists, and to generate them, macros become
programs in their own right.

7.4 Testing Macroexpansion

Having written a macro, how do we test it? A macro like memq is simple enough
that one can tell just by looking at it what it will do. When writing more compli-
cated macros, we have to be able to check that they are being expanded correctly.

Figure 7.4 shows a macro definition and two ways of looking at its expansion.
The built-in function macroexpand takes an expression and returns its macroex-
pansion. Sending a macro call to macroexpand shows how the macro call will
finally be expanded before being evaluated, but a complete expansion is not al-
ways what you want in order to test a macro. When the macro in question relies
on other macros, they too will be expanded, so a complete macroexpansion can
sometimes be difficult to read.

From the first expression shown in Figure 7.4, it’s hard to tell whether or not
while is expanding as intended, because the built-in do macro gets expanded, as
well as the prog macro into which it expands. What we need is a way of seeing
the result after only one step of expansion. This is the purpose of the built-in
function macroexpand-1, shown in the second example; macroexpand-1 stops
after just one step, even if the expansion is still a macro call.

When we want to look at the expansion of a macro call, it will be a nuisance
always to have to type

(pprint (macroexpand-1 ’(or x y)))

Figure 7.5 defines a new macro which allows us to say instead:

(mac (or x y))

Typically you debug functions by calling them, and macros by expanding
them. But since a macro call involves two layers of computation, there are two
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> (defmacro while (test &body body)
‘(do ()

((not ,test))
,@body))

WHILE

> (pprint (macroexpand ’(while (able) (laugh))))

(BLOCK NIL
(LET NIL
(TAGBODY
#:G61
(IF (NOT (ABLE)) (RETURN NIL))
(LAUGH)
(GO #:G61))))

T
> (pprint (macroexpand-1 ’(while (able) (laugh))))

(DO NIL
((NOT (ABLE)))

(LAUGH))
T

Figure 7.4: A macro and two depths of expansion.

(defmacro mac (expr)
‘(pprint (macroexpand-1 ’,expr)))

Figure 7.5: A macro for testing macroexpansion.

points where things can go wrong. If a macro is misbehaving, most of the time
you will be able to tell what’s wrong just by looking at the expansion. Sometimes,
though, the expansion will look fine and you’ll want to evaluate it to see where
the problems arise. If the expansion contains free variables, you may want to set
some variables first. In some systems, you will be able to copy the expansion and
paste it into the toplevel, or select it and choose eval from a menu. In the worst
case you can set a variable to the list returned by macroexpand-1, then call eval
on it:
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> (setq exp (macroexpand-1 ’(memq ’a ’(a b c))))
(MEMBER (QUOTE A) (QUOTE (A B C)) :TEST (FUNCTION EQ))
> (eval exp)
(A B C)

Finally, macroexpansion is more than an aid in debugging, it’s also a way of
learning how to write macros. Common Lisp has over a hundred macros built-in,
some of them quite complex. By looking at the expansions of these macros you
will often be able to see how they were written.

7.5 Destructuring in Parameter Lists

Destructuring is a generalization of the sort of assignment3 done by function calls.
If you define a function of several arguments

(defun foo (x y z)
(+ x y z))

then when the function is called

(foo 1 2 3)

the parameters of the function are assigned arguments in the call according to their
position: x to 1, y to 2, and z to 3. Destructuring describes the situation where
this sort of positional assignment is done for arbitrary list structures, as well as
flat lists like (x y z).

The Common Lisp destructuring-bind macro (new in CLTL2) takes a
pattern, an argument evaluating to a list, and a body of expressions, and evaluates
the expressions with the parameters in the pattern bound to the corresponding
elements of the list:

> (destructuring-bind (x (y) . z) ’(a (b) c d)
(list x y z))

(A B (C D))

This new operator and others like it form the subject of Chapter 18.
Destructuring is also possible in macro parameter lists. The Common Lisp

defmacro allows parameter lists to be arbitrary list structures. When a macro
call is expanded, components of the call will be assigned to the parameters as if
by destructuring-bind. The built-in dolist macro takes advantage of such
parameter list destructuring. In a call like:

3Destructuring is usually seen in operators which create bindings, rather than do assignments.
However, conceptually destructuring is a way of assigning values, and would work just as well for
existing variables as for new ones. That is, there is nothing to stop you from writing a destructuring
setq.
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(dolist (x ’(a b c))
(print x))

the expansion function must pluck x and ’(a b c) from within the list given as
the first argument. That can be done implicitly by giving dolist the appropriate
parameter list:4

(defmacro our-dolist ((var list &optional result) &body body)
‘(progn

(mapc #’(lambda (,var) ,@body)
,list)

(let ((,var nil))
,result)))

In Common Lisp, macros like dolist usually enclose within a list the arguments
not part of the body. Because it takes an optional result argument, dolist
must enclose its first arguments in a distinct list anyway. But even if the extra
list structure were not necessary, it would make calls to dolist easier to read.
Suppose we want to define a macro when-bind, like when except that it binds
some variable to the value returned by the test expression. This macro may be
best implemented with a nested parameter list:

(defmacro when-bind ((var expr) &body body)
‘(let ((,var ,expr))

(when ,var
,@body)))

and called as follows:

(when-bind (input (get-user-input))
(process input))

instead of:

(let ((input (get-user-input)))
(when input
(process input)))

Used sparingly, parameter list destructuring can result in clearer code. At a
minimum, it can be used in macros like when-bind and dolist, which take two
or more arguments followed by a body of expressions.

4This version is written in this strange way to avoid using gensyms, which are not introduced till
later.
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(defmacro our-expander (name) ‘(get ,name ’expander))

(defmacro our-defmacro (name parms &body body)
(let ((g (gensym)))
‘(progn

(setf (our-expander ’,name)
#’(lambda (,g)

(block ,name
(destructuring-bind ,parms (cdr ,g)
,@body))))

’,name)))

(defun our-macroexpand-1 (expr)
(if (and (consp expr) (our-expander (car expr)))

(funcall (our-expander (car expr)) expr)
expr))

Figure 7.6: A sketch of defmacro.

7.6 A Model of Macros

Aformal description ofwhatmacros dowould be long and confusing. Experienced
programmers do not carry such a description in their heads anyway. It’s more
convenient to remember what defmacro does by imagining how it would be
defined.

There is a long tradition of such explanations in Lisp. The Lisp 1.5 Pro-
grammer’s Manual, first published in 1962, gives for reference a definition of ◦
eval written in Lisp. Since defmacro is itself a macro, we can give it the same
treatment, as in Figure 7.6. This definition uses several techniques which haven’t
been covered yet, so some readers may want to refer to it later.

The definition in Figure 7.6 gives a fairly accurate impression of what macros
do, but like any sketch it is incomplete. It wouldn’t handle the &whole keyword
properly. And what defmacro really stores as the macro-function of its first
argument is a function of two arguments: the macro call, and the lexical envi-
ronment in which it occurs. However, these features are used only by the most
esoteric macros. If you worked on the assumption that macros were implemented
as in Figure 7.6, you would hardly ever go wrong. Every macro defined in this
book would work, for example.

The definition in Figure 7.6 yields an expansion function which is a sharp-
quoted lambda-expression. That should make it a closure: any free symbols in the
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macro definition should refer to variables in the environmentwhere the defmacro
occurred. So it should be possible to say this:

(let ((op ’setq))
(defmacro our-setq (var val)
(list op var val)))

As of CLTL2, it is. But in CLTL1, macro expanders were defined in the null lexical
environment,5 so in some old implementations this definition of our-setq will
not work.

7.7 Macros as Programs

Amacro definition need not be just a backquoted list. A macro is a functionwhich
transforms one sort of expression into another. This function can call list to
generate its result, but can just as well invoke a whole subprogram consisting of
hundreds of lines of code.

Section 7.3 gave an easy way of writing macros. Using this technique we can
write macros whose expansions contain the same subexpressions as appear in the
macro call. Unfortunately, only the simplest macros meet this condition. As a
more complicated example, consider the built-in macro do. It isn’t possible to
write do as a macro which simply shuffles its parameters. The expansion has to
build complex expressions which never appear in the macro call.

The more general approach to writing macros is to think about the sort of
expression you want to be able to use, what you want it to expand into, and then
write the program that will transform the first form into the second. Try expanding
an example by hand, then look at what happenswhen one form is transformed into
another. By working from examples you can get an idea of what will be required
of your proposed macro.

Figure 7.7 shows an instance of do, and the expression into which it should
expand. Doing expansions by hand is a good way to clarify your ideas about how
a macro should work. For example, it may not be obvious until one tries writing
the expansion that the local variables will have to be updated using psetq.

The built-in macro psetq (named for “parallel setq”) behaves like setq,
except that all its (even-numbered) arguments will be evaluated before any of the
assignments are made. If an ordinary setq has more than two arguments, then
the new value of the first argument is visible during the evaluation of the fourth:

5For an example of macro where this distinction matters, see the note on page 393.
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(do ((w 3)
(x 1 (1+ x))
(y 2 (1+ y))
(z))

((> x 10) (princ z) y)
(princ x)
(princ y))

should expand into something like

(prog ((w 3) (x 1) (y 2) (z nil))
foo
(if (> x 10)

(return (progn (princ z) y)))
(princ x)
(princ y)
(psetq x (1+ x) y (1+ y))
(go foo))

Figure 7.7: Desired expansion of do.

> (let ((a 1))
(setq a 2 b a)
(list a b))

(2 2)

Here, because a is set first, b gets its new value, 2. A psetq is supposed to behave
as if its arguments were assigned in parallel:

> (let ((a 1))
(psetq a 2 b a)
(list a b))

(2 1)

So here b gets the old value of a. The psetq macro is provided especially to
supportmacros like do, which need to evaluate some of their arguments in parallel.
(Had we used setq, we would have been defining do* instead.)

On looking at the expansion, it is also clear that we can’t really use foo as
the loop label. What if foo is also used as a loop label within the body of the
do? Chapter 9 will deal with this problem in detail; for now, suffice it to say that
instead of using foo, the macroexpansion must use a special anonymous symbol
returned by the function gensym.
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(defmacro our-do (bindforms (test &rest result) &body body)
(let ((label (gensym)))
‘(prog ,(make-initforms bindforms)

,label
(if ,test

(return (progn ,@result)))
,@body
(psetq ,@(make-stepforms bindforms))
(go ,label))))

(defun make-initforms (bindforms)
(mapcar #’(lambda (b)

(if (consp b)
(list (car b) (cadr b))
(list b nil)))

bindforms))

(defun make-stepforms (bindforms)
(mapcan #’(lambda (b)

(if (and (consp b) (third b))
(list (car b) (third b))
nil))

bindforms))

Figure 7.8: Implementing do.

In order to write do, we consider what it would take to transform the first
expression in Figure 7.7 into the second. To perform such a transformation,
we need to do more than get the macro parameters into the right positions in
some backquoted list. The initial prog has to be followed by a list of symbols
and their initial bindings, which must be extracted from the second argument
passed to the do. The function make-initforms in Figure 7.8 will return such
a list. We also have to build a list of arguments for the psetq, but this case is
more complicated because not all the symbols should be updated. In Figure 7.8,
make-stepforms returns arguments for the psetq. With these two functions,
the rest of the definition becomes fairly straightforward.

The code in Figure 7.8 isn’t exactly the way do would be written in a
real implementation. To emphasize the computation done during expansion,
make-initforms and make-stepforms have been broken out as separate func-
tions. In the future, such codewill usually be left within the defmacro expression.
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With the definition of this macro, we begin to see what macros can do. A
macro has full access to Lisp to build an expansion. The code used to generate
the expansion may be a program in its own right.

7.8 Macro Style

Good style means something different for macros. Style matters when code is
either read by people or evaluated by Lisp. With macros, both of these activities
take place under slightly unusual circumstances.

There are two different kinds of code associated with a macro definition: ex-
pander code, the code used by the macro to generate its expansion, and expansion
code, which appears in the expansion itself. The principles of style are different
for each. For programs in general, to have good style is to be clear and efficient.
These principles are bent in opposite directions by the two types of macro code:
expander code can favor clarity over efficiency, and expansion code can favor
efficiency over clarity.

It’s in compiled code that efficiency counts most, and in compiled code the
macro calls have already been expanded. If the expander code was efficient, it
made compilation go slightly faster, but it won’t make any difference in how well
the program runs. Since the expansion of macro calls tends to be only a small part
of the work done by a compiler, macros which expand efficiently can’t usually
make much of a difference even in the compilation speed. So most of the time
you can safely write expander code the way you would write a quick, first version
of a program. If the expander code does unnecessary work or conses a lot, so
what? Your time is better spent improving other parts of the program. Certainly
if there’s a choice between clarity and speed in expander code, clarity should
prevail. Macro definitions are generally harder to read than function definitions,
because they contain a mix of expressions evaluated at two different times. If this
confusion can be reduced at the expense of efficiency in the expander code, it’s a
bargain.

For example, suppose that we wanted to define a version of and as a macro.
Since (and a b c) is equivalent to (if a (if b c)), we can write and in
terms of if as in the first definition in Figure 7.9. According to the standards by
which we judge ordinary code, our-and is badly written. The expander code is
recursive, and on each recursion finds the length of successive cdrs of the same
list. If this code were going to be evaluated at runtime, it would be better to define
this macro as in our-andb, which generates the same expansion with no wasted
effort. However, as a macro definition our-and is just as good, if not better. It
may be inefficient in calling length on each recursion, but its organization shows
more clearly the way in which the expansion depends on the number of conjuncts.
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(defmacro our-and (&rest args)
(case (length args)
(0 t)
(1 (car args))
(t ‘(if ,(car args)

(our-and ,@(cdr args))))))

(defmacro our-andb (&rest args)
(if (null args)

t
(labels ((expander (rest)

(if (cdr rest)
‘(if ,(car rest)

,(expander (cdr rest)))
(car rest))))

(expander args))))

Figure 7.9: Two macros equivalent to and.

As always, there are exceptions. In Lisp, the distinction between compile-
time and runtime is an artificial one, so any rule which depends upon it is likewise
artificial. In some programs, compile-time is runtime. If you’re writing a program
whose main purpose is transformation and which uses macros to do it, then
everything changes: the expander code becomes your program, and the expansion
its output. Of course under such circumstances expander code should be written
with efficiency in mind. However, it’s safe to say that most expander code (a) only
affects the speed of compilation, and (b) doesn’t affect it very much—meaning
that clarity should nearly always come first.

With expansion code, it’s just the opposite. Clarity matters less for macro
expansions because they are rarely looked at, especially by other people. The
forbidden goto is not entirely forbidden in expansions, and the disparaged setq
not quite so disparaged.

Proponents of structured programming disliked goto for what it did to source
code. It was not machine language jump instructions that they considered
harmful—so long as they were hidden by more abstract constructs in source
code. Gotos are condemned in Lisp precisely because it’s so easy to hide them:
you can use do instead, and if you didn’t have do, you could write it. Of course,
if we’re going to build new abstractions on top of goto, the goto is going to have
to exist somewhere. Thus it is not necessarily bad style to use go in the definition
of a new macro, if it can’t be written in terms of some existing macro.
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Similarly, setq is frowned upon because it makes it hard to see where a given
variable gets its value. However, a macroexpansion is not going to be read by
many people, so there is usually little harm in using setq on variables created
within the macroexpansion. If you look at expansions of some of the built-in
macros, you’ll see quite a lot of setqs.

Several circumstances can make clarity more important in expansion code. If
you’re writing a complicated macro, you may end up reading the expansions after
all, at least while you’re debugging it. Also, in simple macros, only a backquote
separates expander code from expansion code, so if such macros generate ugly
expansions, the ugliness will be all too visible in your source code. However,
even when the clarity of expansion code becomes an issue, efficiency should still
predominate. Efficiency is important in most runtime code. Two things make it
especially so for macro expansions: their ubiquity and their invisibility.

Macros are often used to implement general-purpose utilities, which are then
called everywhere in a program. Something used so often can’t afford to be
inefficient. What looks like a harmless little macro could, after the expansion
of all the calls to it, amount to a significant proportion of your program. Such a
macro should receivemore attention than its length would seem to demand. Avoid
consing especially. A utility which conses unnecessarily can ruin the performance
of an otherwise efficient program.

The other reason to look to the efficiency of expansion code is its very invis-
ibility. If a function is badly implemented, it will proclaim this fact to you every
time you look at its definition. Not so with macros. From a macro definition,
inefficiency in the expansion codemay not be evident, which is all the more reason
to go looking for it.

7.9 Dependence on Macros

If you redefine a function, other functions which call it will automatically get the
new version.6 The same doesn’t always hold for macros. A macro call which
occurs in a function definition gets replaced by its expansion when the function
is compiled. What if we redefine the macro after the calling function has been
compiled? Since no trace of the original macro call remains, the expansion within
the function can’t be updated. The behavior of the functionwill continue to reflect
the old macro definition:

> (defmacro mac (x) ‘(1+ ,x))
MAC

6Except functions compiled inline, which impose the same restrictions on redefinition as macros.
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> (setq fn (compile nil ’(lambda (y) (mac y))))
#<Compiled-Function BF7E7E>
> (defmacro mac (x) ‘(+ ,x 100))
MAC
> (funcall fn 1)
2

Similar problems occur if code which calls some macro is compiled before
the macro itself is defined. CLTL2 says that “a macro definition must be seen
by the compiler before the first use of the macro.” Implementations vary in how
they respond to violations of this rule. Fortunately it’s easy to avoid both types
of problem. If you adhere to the following two principles, you need never worry
about stale or nonexistent macro definitions:

1. Define macros before functions (or macros) which call them.

2. When a macro is redefined, also recompile all the functions (or macros)
which call it—directly or via other macros.

It has been suggested that all the macros in a program be put in a separate file,
to make it easier to ensure that macro definitions are compiled first. That’s taking
things too far. It would be reasonable to put general-purpose macros like while
into a separate file, but general-purpose utilities ought to be separated from the
rest of a program anyway, whether they’re functions or macros.

Some macros are written just for use in one specific part of a program, and
these should be defined with the code which uses them. So long as the definition
of each macro appears before any calls to it, your programs will compile fine.
Collecting together all your macros, simply because they’re macros, would do
nothing but make your code harder to read.

7.10 Macros from Functions

This section describes how to transform functions into macros. The first step in
translating a function into a macro is to ask yourself if you really need to do it.
Couldn’t you just as well declare the function inline (p. 26)?

There are some legitimate reasons to consider how to translate functions into
macros, though. When you begin writing macros, it sometimes helps to think
as if you were writing a function—an approach that usually yields macros which
aren’t quite right, but which at least give you something to work from. Another
reason to look at the relationship between macros and functions is to see how they
differ. Finally, Lisp programmers sometimes actually want to convert functions
into macros.
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The difficulty of translating a function into a macro depends on a number of
properties of the function. The easiest class to translate are the functions which

1. Have a body consisting of a single expression.

2. Have a parameter list consisting only of parameter names.

3. Create no new variables (except the parameters).

4. Are not recursive (nor part of a mutually recursive group).

5. Have no parameter which occurs more than once in the body.

6. Have no parameter whose value is used before that of another parameter
occurring before it in the parameter list.

7. Contain no free variables.

One function which meets these criteria is the built-in Common Lisp function
second, which returns the second element of a list. It could be defined:

(defun second (x) (cadr x))

Where a function definition meets all the conditions above, you can easily trans-
form it into an equivalent macro definition. Simply put a backquote in front of the
body and a comma in front of each symbol which occurs in the parameter list:

(defmacro second (x) ‘(cadr ,x))

Of course, the macro can’t be called under all the same conditions. It can’t be
given as the first argument to apply or funcall, and it should not be called in
environments where the functions it calls have new local bindings. For ordinary
in-line calls, though, the macro second should do the same thing as the function
second.

The technique changes slightly when the body has more than one expression,
because a macro must expand into a single expression. So if condition 1 doesn’t
hold, you have to add a progn. The function noisy-second:

(defun noisy-second (x)
(princ "Someone is taking a cadr!")
(cadr x))

could be duplicated by the following macro:

(defmacro noisy-second (x)
‘(progn

(princ "Someone is taking a cadr!")
(cadr ,x)))
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When the function doesn’t meet condition 2 because it has an &rest or &body
parameter, the rules are the same, except that the parameter, instead of simply
having a comma before it, must be spliced into a call to list. Thus

(defun sum (&rest args)
(apply #’+ args))

becomes

(defmacro sum (&rest args)
‘(apply #’+ (list ,@args)))

which in this case would be better rewritten:

(defmacro sum (&rest args)
‘(+ ,@args))

When condition 3 doesn’t hold—when new variables are created within the
function body—the rule about the insertion of commas must be modified. Instead
of putting commas before all symbols in the parameter list, we only put them
before those which will refer to the parameters. For example, in:

(defun foo (x y z)
(list x (let ((x y))

(list x z))))

neither of the last two instances of x will refer to the parameter x. The second
instance is not evaluated at all, and the third instance refers to a new variable
established by the let. So only the first instance will get a comma:

(defmacro foo (x y z)
‘(list ,x (let ((x ,y))

(list x ,z))))

Functions can sometimes be transformed into macros when conditions 4, 5 and
6 don’t hold. However, these topics are treated separately in later chapters. The
issue of recursion in macros is covered in Section 10.4, and the dangers ofmultiple
and misordered evaluation in Sections 10.1 and 10.2, respectively.

As for condition 7, it is possible to simulate closures with macros, using a
technique similar to the error described on page 37. But seeing as this is a low
hack, not consonant with the genteel tone of this book, we shall not go into details.
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7.11 Symbol Macros

CLTL2 introduced a new kind of macro into Common Lisp, the symbol-macro.
While a normal macro call looks like a function call, a symbol-macro “call” looks
like a symbol.

Symbol-macros can only be locally defined. The symbol-macrolet special
form can, within its body, cause a lone symbol to behave like an expression:

> (symbol-macrolet ((hi (progn (print "Howdy")
1)))

(+ hi 2))
"Howdy"
3

The body of the symbol-macroletwill be evaluated as if every hi in argument
position had been replaced with (progn (print "Howdy") 1).

Conceptually, symbol-macros are like macros that don’t take any arguments.
With no arguments,macros become simply textual abbreviations. This is not to say
that symbol-macros are useless, however. They are used in Chapter 15 (page 205)
and Chapter 18 (page 237), and in the latter instance they are indispensable.
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When to Use Macros

How do we knowwhether a given function should really be a function, rather than
a macro? Most of the time there is a clear distinction between the cases which
call for macros and those which don’t. By default we should use functions: it is
inelegant to use a macro where a function would do. We should use macros only
where they bring us some specific advantage.

When domacros bring advantages? That is the subject of this chapter. Usually
the question is not one of advantage, but necessity. Most of the things we do with
macros, we could not do with functions. Section 8.1 lists the kinds of operators
which can only be implemented as macros. However, there is also a small (but◦
interesting) class of borderline cases, in which an operator might justifiably be
written as a function or a macro. For these situations, Section 8.2 gives the
arguments for and against macros. Finally, having considered what macros are
capable of doing, we turn in Section 8.3 to a related question: what kinds of things
do people do with them?

8.1 When Nothing Else Will Do

It’s a general principle of good design that if you find similar code appearing at
several points in a program, you should write a subroutine and replace the similar
sequences of code with calls to the subroutine. When we apply this principle to
Lisp programs, we have to decide whether the “subroutine” should be a function
or a macro.

In some cases it’s easy to decide to write a macro instead of a function,
because only a macro can do what’s needed. A function like 1+ could conceivably
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be written as either a function or a macro:

(defun 1+ (x) (+ 1 x))

(defmacro 1+ (x) ‘(+ 1 ,x))

But while, from Section 7.3, could only be defined as a macro:

(defmacro while (test &body body)
‘(do ()

((not ,test))
,@body))

There is no way to duplicate the behavior of this macro with a function. The
definition of while splices the expressions passed as body into the body of a
do, where they will be evaluated only if the test expression returns nil. No
function could do that; in a function call, all the arguments are evaluated before
the function is even invoked.

When you do need a macro, what do you need from it? Macros can do two
things that functions can’t: they can control (or prevent) the evaluation of their
arguments, and they are expanded right into the calling context. Any application
which requires macros requires, in the end, one or both of these properties.

The informal explanation that “macros don’t evaluate their arguments” is
slightly wrong. It would be more precise to say that macros control the evaluation
of the arguments in the macro call. Depending on where the argument is placed
in the macro’s expansion, it could be evaluated once, many times, or not at all.
Macros use this control in four major ways:

1. Transformation. The Common Lisp setfmacro is one of a class of macros
which pick apart their arguments before evaluation. A built-in access func-
tion will often have a converse whose purpose is to set what the access
function retrieves. The converse of car is rplaca, of cdr, rplacd, and
so on. With setf we can use calls to such access functions as if they were
variables to be set, as in (setf (car x) ’a), which could expand into
(progn (rplaca x ’a) ’a).
To perform this trick, setf has to look inside its first argument. To know
that the case above requires rplaca, setf must be able to see that the first
argument is an expression beginning with car. Thus setf, and any other
operator which transforms its arguments, must be written as a macro.

2. Binding. Lexical variablesmust appear directly in the source code. The first
argument to setq is not evaluated, for example, so anything built on setq
must be a macro which expands into a setq, rather than a function which
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calls it. Likewise for operators like let, whose arguments are to appear as
parameters in a lambda expression, for macros like do which expand into
lets, and so on. Any new operator which is to alter the lexical bindings of
its arguments must be written as a macro.

3. Conditional evaluation. All the arguments to a function are evaluated. In
constructs like when, we want some arguments to be evaluated only under
certain conditions. Such flexibility is only possible with macros.

4. Multiple evaluation. Not only are the arguments to a function all evaluated,
they are all evaluated exactly once. We need a macro to define a construct
like do, where certain arguments are to be evaluated repeatedly.

There are also several ways to take advantage of the inline expansion of macros.
It’s important to emphasize that the expansions thus appear in the lexical context
of the macro call, since two of the three uses for macros depend on that fact. They
are:

5. Using the calling environment. A macro can generate an expansion con-
taining a variable whose binding comes from the context of the macro call.
The behavior of the following macro:

(defmacro foo (x)
‘(+ ,x y))

depends on the binding of y where foo is called.
This kind of lexical intercourse is usually viewed more as a source of con-
tagion than a source of pleasure. Usually it would be bad style to write such
a macro. The ideal of functional programming applies as well to macros:
the preferred way to communicate with a macro is through its parameters.
Indeed, it is so rarely necessary to use the calling environment that most
of the time it happens, it happens by mistake. (See Chapter 9.) Of all the
macros in this book, only the continuation-passingmacros (Chapter 20) and
some parts of the ATN compiler (Chapter 23) use the calling environment in
this way.

6. Wrapping a new environment. A macro can also cause its arguments to
be evaluated in a new lexical environment. The classic example is let,
which could be implemented as a macro on lambda (page 144). Within
the body of an expression like (let ((y 2)) (+ x y)), y will refer to a
new variable.



8.2 MACRO OR FUNCTION? 109

7. Saving function calls. The third consequence of the inline insertion of
macroexpansions is that in compiled code there is no overhead associated
with a macro call. By runtime, the macro call has been replaced by its
expansion. (The same is true in principle of functions declared inline.)

Significantly, cases 5 and 6, when unintentional, constitute the problemof variable
capture, which is probably the worst thing a macro writer has to fear. Variable
capture is discussed in Chapter 9.

Instead of seven ways of using macros, it might be better to say that there are
six and a half. In an ideal world, all Common Lisp compilers would obey inline
declarations, and saving function calls would be a task for inline functions, not
macros. An ideal world is left as an exercise to the reader.

8.2 Macro or Function?

The previous section dealt with the easy cases. Any operator that needs access
to its parameters before they are evaluated should be written as a macro, because
there is no other choice. What about those operators which could be written either
way? Consider for example the operator avg, which returns the average of its
arguments. It could be defined as a function

(defun avg (&rest args)
(/ (apply #’+ args) (length args)))

but there is a good case for defining it as a macro,

(defmacro avg (&rest args)
‘(/ (+ ,@args) ,(length args)))

because the function versionwould entail an unnecessary call to length each time
avg was called. At compile-time we may not know the values of the arguments,
but we do know how many there are, so the call to length could just as well be
made then. Here are several points to consider when we face such choices:

THE PROS

1. Computation at compile-time. A macro call involves computation at two
times: when the macro is expanded, and when the expansion is evaluated.
All the macroexpansion in a Lisp program is done when the program is
compiled, and every bit of computation which can be done at compile-time
is one bit that won’t slow the program down when it’s running. If an
operator could be written to do some of its work in the macroexpansion
stage, it will be more efficient to make it a macro, because whatever work a
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smart compiler can’t do itself, a function has to do at runtime. Chapter 13
describesmacros like avgwhich do some of their work during the expansion
phase.

2. Integration with Lisp. Sometimes, using macros instead of functions will
make a program more closely integrated with Lisp. Instead of writing a
program to solve a certain problem, you may be able to use macros to
transform the problem into one that Lisp already knows how to solve. This
approach,when possible, will usuallymake programs both smaller andmore
efficient: smaller because Lisp is doing some of your work for you, and
more efficient because production Lisp systems generally have had more
of the fat sweated out of them than user programs. This advantage appears
mostly in embedded languages, which are described starting in Chapter 19.

3. Saving function calls. A macro call is expanded right into the code where
it appears. So if you write some frequently used piece of code as a macro,
you can save a function call every time it’s used. In earlier dialects of Lisp,
programmers took advantage of this property of macros to save function
calls at runtime. In Common Lisp, this job is supposed to be taken over by
functions declared inline.
By declaring a function to be inline, you ask for it to be compiled right
into the calling code, just like a macro. However, there is a gap between
theory and practice here; CLTL2 (p. 229) says that “a compiler is free to
ignore this declaration,” and some Common Lisp compilers do. It may still
be reasonable to use macros to save function calls, if you are compelled to
use such a compiler.

In some cases, the combined advantages of efficiency and close integration
with Lisp can create a strong argument for the use of macros. In the query
compiler of Chapter 19, the amount of computation which can be shifted forward
to compile-time is so great that it justifies turning the whole program into a
single giant macro. Though done for speed, this shift also brings the program
closer to Lisp: in the new version, it’s easier to use Lisp expressions—arithmetic
expressions, for example—within queries.

THE CONS

4. Functions are data,while macros are more like instructions to the compiler.
Functions can be passed as arguments (e.g. to apply), returned by functions,
or stored in data structures. None of these things are possible with macros.
In some cases, you can get what youwant by enclosing themacro call within
a lambda-expression. This works, for example, if you want to apply or
funcall certain macros:
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> (funcall #’(lambda (x y) (avg x y)) 1 3)
2

However, this is an inconvenience. It doesn’t always work, either: even if,
like avg, the macro has an &rest parameter, there is no way to pass it a
varying number of arguments.

5. Clarity of source code. Macro definitions can be harder to read than the
equivalent function definitions. So if writing something as a macro would
only make a program marginally better, it might be better to use a function
instead.

6. Clarity at runtime. Macros are sometimes harder to debug than functions.
If you get a runtime error in code which contains a lot of macro calls, the
code you see in the backtrace could consist of the expansions of all those
macro calls, and may bear little resemblance to the code you originally
wrote.
And because macros disappear when expanded, they are not accountable at
runtime. You can’t usually use trace to see how a macro is being called.
If it worked at all, trace would show you the call to the macro’s expander
function, not the macro call itself.

7. Recursion. Using recursion in macros is not so simple as it is in functions.
Although the expansion function of amacromay be recursive, the expansion
itself may not be. Section 10.4 deals with the subject of recursion inmacros.

All these considerations have to be balanced against one another in deciding
when to use macros. Only experience can tell which will predominate. However,
the examples of macros which appear in later chapters cover most of the situations
in which macros are useful. If a potential macro is analogous to one given here,
then it is probably safe to write it as such.

Finally, it should be noted that clarity at runtime (point 6) rarely becomes an
issue. Debugging code which uses a lot of macros will not be as difficult as you
might expect. If macro definitions were several hundred lines long, it might be
unpleasant to debug their expansions at runtime. But utilities, at least, tend to be
written in small, trusted layers. Generally their definitions are less than 15 lines
long. So even if you are reduced to poring over backtraces, such macros will not
cloud your view very much.

8.3 Applications for Macros

Having considered what can be done with macros, the next question to ask is:
in what sorts of applications can we use them? The closest thing to a general
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description of macro use would be to say that they are used mainly for syntactic
transformations. This is not to suggest that the scope for macros is restricted.
Since Lisp programs are made from1 lists, which are Lisp data structures, “syn-
tactic transformation” can go a long way indeed. Chapters 19–24 present whole
programs whose purpose could be described as syntactic transformation, and
which are, in effect, all macro.

Macro applications form a continuum between small general-purposemacros
like while, and the large, special-purposemacros defined in the later chapters. On
one end are the utilities, the macros resembling those that every Lisp has built-in.
They are usually small, general, and written in isolation. However, you can write
utilities for specific classes of programs too, and when you have a collection of
macros for use in, say, graphics programs, they begin to look like a programming
language for graphics. At the far end of the continuum, macros allow you to write
whole programs in a language distinctly different from Lisp. Macros used in this
way are said to implement embedded languages.

Utilities are the first offspring of the bottom-up style. Even when a program
is too small to be built in layers, it may still benefit from additions to the lowest
layer, Lisp itself. The utility nil!, which sets its argument to nil, could not be
defined except as a macro:

(defmacro nil! (x)
‘(setf ,x nil))

Looking at nil!, one is tempted to say that it doesn’t do anything, that it merely
saves typing. True, but all any macro does is save typing. If one wants to
think of it in these terms, the job of a compiler is to save typing in machine
language. The value of utilities should not be underestimated, because their effect
is cumulative: several layers of simple macros can make the difference between
an elegant program and an incomprehensible one.

Most utilities are patterns embodied. When you notice a pattern in your code,
consider turning it into a utility. Patterns are just the sort of thing computers are
good at. Why should you bother following them when you could have a program
do it for you? Suppose that in writing some program you find yourself using in
many different places do loops of the same general form:

(do ()
((not ⟨condition⟩))

. ⟨body of code⟩)
1Made from, in the sense that lists are the input to the compiler. Functions are no longer made of

lists, as they used to be in some earlier dialects.
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When you find a pattern repeated through your code, that pattern often has a name.
The name of this pattern is while. If we want to provide it in a new utility, we will
have to use a macro, because we need conditional and repeated evaluation. If we
define while using this definition from page 91:

(defmacro while (test &body body)
‘(do ()

((not ,test))
,@body))

then we can replace the instances of the pattern with

(while ⟨condition⟩
. ⟨body of code⟩)

Doing so will make the code shorter and also make it declare in a clearer voice
what it’s doing.

The ability to transform their arguments makes macros useful in writing in-
terfaces. The appropriate macro will make it possible to type a shorter, simpler
expression where a long or complex one would have been required. Although
graphic interfaces decrease the need to write such macros for end users, program-
mers use this type of macro as much as ever. The most common example is
defun, which makes the binding of functions resemble, on the surface, a function
definition in a language like Pascal or C. Chapter 2 mentioned that the following
two expressions have approximately the same effect:

(defun foo (x) (* x 2))

(setf (symbol-function ’foo)
#’(lambda (x) (* x 2)))

Thus defun can be implemented as a macro which turns the former into the latter.
We could imagine it written as follows:2

(defmacro our-defun (name parms &body body)
‘(progn

(setf (symbol-function ’,name)
#’(lambda ,parms (block ,name ,@body)))

’,name))

Macros like while and nil! could be described as general-purpose utilities.
Any Lisp programmight use them. But particular domains can have their utilities

2For clarity, this version ignores all the bookkeeping that defun must perform.
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(defun move-objs (objs dx dy)
(multiple-value-bind (x0 y0 x1 y1) (bounds objs)
(dolist (o objs)
(incf (obj-x o) dx)
(incf (obj-y o) dy))

(multiple-value-bind (xa ya xb yb) (bounds objs)
(redraw (min x0 xa) (min y0 ya)

(max x1 xb) (max y1 yb)))))

(defun scale-objs (objs factor)
(multiple-value-bind (x0 y0 x1 y1) (bounds objs)
(dolist (o objs)
(setf (obj-dx o) (* (obj-dx o) factor)

(obj-dy o) (* (obj-dy o) factor)))
(multiple-value-bind (xa ya xb yb) (bounds objs)
(redraw (min x0 xa) (min y0 ya)

(max x1 xb) (max y1 yb)))))

Figure 8.1: Original move and scale.

as well. There is no reason to suppose that base Lisp is the only level at which
you have a programming language to extend. If you’re writing a CAD program,
for example, the best results will sometimes come from writing it in two layers: a
language (or if you prefer a more modest term, a toolkit) for CAD programs, and
in the layer above, your particular application.

Lisp blurs many distinctions which other languages take for granted. In
other languages, there really are conceptual distinctions between compile-time
and runtime, program and data, language and program. In Lisp, these distinctions
exist only as conversational conventions. There is no line dividing, for example,
language and program. You can draw the line wherever suits the problem at
hand. So it really is no more than a question of terminology whether to call an
underlying layer of code a toolkit or a language. One advantage of considering
it as a language is that it suggests you can extend this language, as you do Lisp,
with utilities.

Suppose we are writing an interactive 2D drawing program. For simplicity,
we will assume that the only objects handled by the program are line segments,
represented as an origin ⟨x,y⟩ and a vector ⟨dx,dy⟩. One of the things such a
program will have to do is slide groups of objects. This is the purpose of the
function move-objs in Figure 8.1. For efficiency, we don’t want to redraw the
whole screen after each operation—only the parts which have changed. Hence



8.3 APPLICATIONS FOR MACROS 115

(defmacro with-redraw ((var objs) &body body)
(let ((gob (gensym))

(x0 (gensym)) (y0 (gensym))
(x1 (gensym)) (y1 (gensym)))

‘(let ((,gob ,objs))
(multiple-value-bind (,x0 ,y0 ,x1 ,y1) (bounds ,gob)
(dolist (,var ,gob) ,@body)
(multiple-value-bind (xa ya xb yb) (bounds ,gob)
(redraw (min ,x0 xa) (min ,y0 ya)

(max ,x1 xb) (max ,y1 yb)))))))

(defun move-objs (objs dx dy)
(with-redraw (o objs)
(incf (obj-x o) dx)
(incf (obj-y o) dy)))

(defun scale-objs (objs factor)
(with-redraw (o objs)
(setf (obj-dx o) (* (obj-dx o) factor)

(obj-dy o) (* (obj-dy o) factor))))

Figure 8.2: Move and scale filleted.

the two calls to the function bounds, which returns four coordinates (min x, min
y, max x, max y) representing the bounding rectangle of a group of objects. The
operative part of move-objs is sandwiched between two calls to bounds which
find the bounding rectangle before and then after the movement, and then redraw
the entire affected region.

The function scale-objs is for changing the size of a group of objects.
Since the bounding region could grow or shrink depending on the scale factor,
this function too must do its work between two calls to bounds. As we wrote
more of the program, we would see more of this pattern: in functions to rotate,
flip, transpose, and so on.

With a macro we can abstract out the code that these functions would all have
in common. The macro with-redraw in Figure 8.2 provides the skeleton that
the functions in Figure 8.1 share.3 As a result, they can now be defined in four
lines each, as at the end of Figure 8.2. With these two functions the new macro
has already paid for itself in brevity. And how much clearer the two functions ◦

3The definition of this macro anticipates the next chapter by using gensyms. Their purpose will be
explained shortly.
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become once the details of screen redrawing are abstracted away.
One way to view with-redraw is as a construct in a language for writing

interactive drawing programs. Aswe developmore suchmacros, theywill come to
resemble a programming language in fact as well as in name, and our application
itself will begin to show the elegance one would expect in a program written in a
language defined for its specific needs.

The other major use of macros is to implement embedded languages. Lisp
is an exceptionally good language in which to write programming languages,
because Lisp programs can be expressed as lists, and Lisp has a built-in parser
(read) and compiler (compile) for programs so expressed. Most of the time you
don’t even have to call compile; you can have your embedded language compiled
implicitly, by compiling the code which does the transformations (page 25).

An embedded language is one which is not written on top of Lisp so much
as commingled with it, so that the syntax is a mixture of Lisp and constructs
specific to the new language. The naive way to implement an embedded language
is to write an interpreter for it in Lisp. A better approach, when possible, is
to implement the language by transformation: transform each expression into
the Lisp code that the interpreter would have run in order to evaluate it. That’s
where macros come in. The job of macros is precisely to transform one type
of expression into another, so they’re the natural choice when writing embedded
languages.

In general, the more an embedded language can be implemented by transfor-
mation, the better. For one, it’s less work. If the new language has arithmetic,
for example, you needn’t face all the complexities of representing and manipu-
lating numeric quantities. If Lisp’s arithmetic capabilities are sufficient for your
purposes, then you can simply transform your arithmetic expressions into the
equivalent Lisp ones, and leave the rest to the Lisp.

Using transformationwill ordinarily make your embedded languages faster as
well. Interpreters have inherent disadvantages with respect to speed. When code
occurswithin a loop, for example, an interpreterwill often have to dowork on each
iteration which in compiled code could have been done just once. An embedded
languagewhich has its own interpreterwill therefore be slow,even if the interpreter
itself is compiled. But if the expressions in the new language are transformed into
Lisp, the resulting code can then be compiled by the Lisp compiler. A language
so implemented need suffer none of the overheads of interpretation at runtime.
Short of writing a true compiler for your language, macros will yield the best
performance. In fact, the macros which transform the new language can be seen
as a compiler for it—just one which relies on the existing Lisp compiler to do
most of the work.

We won’t consider any examples of embedded languages here, since Chap-
ters 19–25 are all devoted to the topic. Chapter 19 deals specifically with the dif-
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ference between interpreting and transforming embedded languages, and shows
the same language implemented by each of the two methods.

One book on Common Lisp asserts that the scope for macros is limited, citing
as evidence the fact that, of the operators defined in CLTL1, less than 10% were
macros. This is like saying that since our house is made of bricks, our furniture
will be too. The proportion of macros in a Common Lisp program will depend
entirely on what it’s supposed to do. Some programs will contain no macros.
Some programs could be all macros.



9

Variable Capture

Macros are vulnerable to a problem called variable capture. Variable capture
occurs when macroexpansion causes a name clash: when some symbol ends up
referring to a variable from another context. Inadvertent variable capture can
cause extremely subtle bugs. This chapter is about how to foresee and avoid
them. However, intentional variable capture is a useful programming technique,
and Chapter 14 is full of macros which rely on it.

9.1 Macro Argument Capture

Amacro vulnerable to unintended variable capture is a macrowith a bug. To avoid
writing such macros, we must know precisely when capture can occur. Instances
of variable capture can be traced to one of two situations: macro argument capture
and free symbol capture. In argument capture, a symbol passed as an argument in
themacro call inadvertently refers to a variable established by themacro expansion
itself. Consider the following definition of the macro for, which iterates over a
body of expressions like a Pascal for loop:

(defmacro for ((var start stop) &body body) ; wrong
‘(do ((,var ,start (1+ ,var))

(limit ,stop))
((> ,var limit))

,@body))

This macro looks correct at first sight. It even seems to work fine:

118
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> (for (x 1 5)
(princ x))

12345
NIL

Indeed, the error is so subtle that we might use this version of the macro hundreds
of times and have it always work perfectly. Not if we call it this way, though:

(for (limit 1 5)
(princ limit))

We might expect this expression to have the same effect as the one before. But it
doesn’t print anything; it generates an error. To see why, we look at its expansion:

(do ((limit 1 (1+ limit))
(limit 5))

((> limit limit))
(princ limit))

Now it’s obvious what goes wrong. There is a name clash between a symbol
local to the macro expansion and a symbol passed as an argument to the macro.
The macroexpansion captures limit. It ends up occurring twice in the same do,
which is illegal.

Errors caused by variable capture are rare, but what they lack in frequency they
make up in viciousness. This capture was comparatively mild—here, at least, we
got an error. More often than not, a capturing macro would simply yield incorrect
results with no indication that anything was wrong. In this case,

> (let ((limit 5))
(for (i 1 10)

(when (> i limit)
(princ i))))

NIL

the resulting code quietly does nothing.

9.2 Free Symbol Capture

Less frequently, the macro definition itself contains a symbol which inadvertently
refers to a binding in the environment where the macro is expanded. Suppose
some program, instead of printingwarnings to the user as they arise, wants to store
the warnings in a list, to be examined later. One person writes a macro gripe,
which takes a warning message and adds it to a global list, w:
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(defvar w nil)

(defmacro gripe (warning) ; wrong
‘(progn (setq w (nconc w (list ,warning)))

nil))

Someone else then wants to write a function sample-ratio, to return the ratio
of the lengths of two lists. If either of the lists has less than two elements, the
function is to return nil instead, also issuing a warning that it was called on a
statistically insignificant case. (Actual warnings could be more informative, but
their content isn’t relevant to this example.)

(defun sample-ratio (v w)
(let ((vn (length v)) (wn (length w)))
(if (or (< vn 2) (< wn 2))

(gripe "sample < 2")
(/ vn wn))))

If sample-ratio is called with w = (b), then it will want to warn that one of its
arguments, with only one element, is statistically insignificant. But when the call
to gripe is expanded, it will be as if sample-ratio had been defined:

(defun sample-ratio (v w)
(let ((vn (length v)) (wn (length w)))
(if (or (< vn 2) (< wn 2))

(progn (setq w (nconc w (list "sample < 2")))
nil)

(/ vn wn))))

The problem here is that gripe is used in a context where w has its own local
binding. The warning, instead of being saved in the global warning list, will be
nconced onto the end of one of the parameters of sample-ratio. Not only is
the warning lost, but the list (b), which is probably used as data elsewhere in the
program, will have an extraneous string appended to it:

> (let ((lst ’(b)))
(sample-ratio nil lst)
lst)

(B "sample < 2")
> w
NIL
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9.3 When Capture Occurs

It’s asking a lot of the macro writer to be able to look at a macro definition and
foresee all the possible problems arising from these two types of capture. Variable
capture is a subtle matter, and it takes some experience to anticipate all the ways
a capturable symbol could wreak mischief in a program. Fortunately, you can
detect and eliminate capturable symbols in your macro definitions without having
to think about how their capture could send your program awry. This section
provides a straightforward rule for detecting capturable symbols. The remaining
sections of this chapter explain techniques for eliminating them.

The rule for defining a capturable variable depends on some subordinate
concepts, which must be defined first:

Free: A symbol s occurs free in an expression when it is used as a variable in that
expression, but the expression does not create a binding for it.

In the following expression,

(let ((x y) (z 10))
(list w x z))

w, x and z all occur freewithin the list expression,which establishes no bindings.
However, the enclosing let expression establishes bindings for x and z, so within
the let as a whole, only y and w occur free. Note that in

(let ((x x))
x)

the second instance of x is free—it’s not within the scope of the new binding being
established for x.

Skeleton: The skeleton of a macro expansion is the whole expansion, minus
anything which was part of an argument in the macro call.

If foo is defined:

(defmacro foo (x y)
‘(/ (+ ,x 1) ,y))

and called thus:

(foo (- 5 2) 6)

then it yields the macro expansion:
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(/ (+ (- 5 2) 1) 6)

The skeleton of this expansion is the above expression with holes where the
parameters x and y got inserted:

(/ (+ 1) )

With these two concepts defined, it’s possible to state a concise rule for
detecting capturable symbols:

Capturable: A symbol is capturable in some macro expansion if (a) it occurs
free in the skeleton of the macro expansion, or (b) it is bound by a part of
the skeleton in which arguments passed to the macro are either bound or
evaluated.

Some examples will show the implications of this rule. In the simplest case:

(defmacro cap1 ()
’(+ x 1))

x is capturable because it will occur free in the skeleton. That’s what caused the
bug in gripe. In this macro:

(defmacro cap2 (var)
‘(let ((x ...)

(,var ...))
...))

x is capturable because it is bound in an expression where an argument to the
macro call will also be bound. (That’s what went wrong in for.) Likewise for the
following two macros

(defmacro cap3 (var)
‘(let ((x ...))

(let ((,var ...))
...)))

(defmacro cap4 (var)
‘(let ((,var ...))

(let ((x ...))
...)))

in both of which x is capturable. However, if there is no context in which the
binding of x and the variable passed as an argument will both be visible, as in
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(defmacro safe1 (var)
‘(progn (let ((x 1))

(print x))
(let ((,var 1))
(print ,var))))

then x won’t be capturable. Not all variables bound by the skeleton are at risk.
However, if arguments to the macro call are evaluatedwithin a binding established
by the skeleton,

(defmacro cap5 (&body body)
‘(let ((x ...))

,@body))

then variables so bound are at risk of capture: in cap5, x is capturable. In this
case, though,

(defmacro safe2 (expr)
‘(let ((x ,expr))

(cons x 1)))

x is not capturable, because when the argument passed to expr is evaluated, the
new binding of x won’t be visible. Note also that it’s only the binding of skeletal
variables we have to worry about. In this macro

(defmacro safe3 (var &body body)
‘(let ((,var ...))

,@body))

no symbol is at risk of inadvertent capture (assuming that the user expects that the
first argument will be bound).

Now let’s look at the original definition of for in light of the new rule for
identifying capturable symbols:

(defmacro for ((var start stop) &body body) ; wrong
‘(do ((,var ,start (1+ ,var))

(limit ,stop))
((> ,var limit))

,@body))

It turns out now that this definition of for is vulnerable to capture in two ways:
limit could be passed as the first argument to for, as in the original example:

(for (limit 1 5)
(princ limit))
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but it’s just as dangerous if limit occurs in the body of the loop:

(let ((limit 0))
(for (x 1 10)
(incf limit x))

limit)

Someone using for in this way would be expecting his own binding of limit to
be the one incremented in the loop, and the expression as a whole to return 55; in
fact, only the binding of limit generated by the skeleton of the expansion will
be incremented:

(do ((x 1 (1+ x))
(limit 10))

((> x limit))
(incf limit x))

and since that’s the one which controls iteration, the loop won’t even terminate.
The rules presented in this section should be usedwith the reservation that they

are intended only as a guide. They are not even formally stated, let alone formally
correct. The problem of capture is a vaguely defined one, since it depends on
expectations. For example, in an expression like

(let ((x 1)) (list x))

we don’t regard it as an error that when (list x) is evaluated, x will refer to a
new variable. That’s what let is supposed to do. The rules for detecting capture
are also imprecise. You could write macros which passed these tests, and which
still would be vulnerable to unintended capture. For example,

(defmacro pathological (&body body) ; wrong
(let* ((syms (remove-if (complement #’symbolp)

(flatten body)))
(var (nth (random (length syms))

syms)))
‘(let ((,var 99))

,@body)))

When this macro is called, the expressions in the body will be evaluated as if in
a progn—but one random variable within the body may have a different value.
This is clearly capture, but it passes our tests, because the variable does not occur
in the skeleton. In practice, though, the rules will work nearly all the time: one
rarely (if ever) wants to write a macro like the example above.
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Vulnerable to capture:

(defmacro before (x y seq)
‘(let ((seq ,seq))

(< (position ,x seq)
(position ,y seq))))

A correct version:

(defmacro before (x y seq)
‘(let ((xval ,x) (yval ,y) (seq ,seq))

(< (position xval seq)
(position yval seq))))

Figure 9.1: Avoiding capture with let.

9.4 Avoiding Capture with Better Names

The first two sections divided instances of variable capture into two types: ar-
gument capture, where a symbol used in an argument is caught by a binding
established by the macro skeleton, and free symbol capture, where a free symbol
in a macroexpansion is caught by a binding in force where the macro is ex-
panded. The latter cases are usually dealt with simply by giving global variables
distinguished names. In Common Lisp, it is traditional to give global variables
names which begin and end with asterisks. The variable defining the current
package is called *package*, for example. (Such a name may be pronounced
“star-package-star” to emphasize that it is not an ordinary variable.)

So really it was the responsibility of the author of gripe to store warnings
in a variable called something like *warnings*, rather than just w. If the author
of sample-ratio had used *warnings* as a parameter, then he would deserve
every bug he got, but he can’t be blamed for thinking that it would be safe to call
a parameter w.

9.5 Avoiding Capture by Prior Evaluation

Sometimes argument capture can be cured simply by evaluating the endan-
gered arguments outside of any bindings created by the macroexpansion. The
simplest cases can be handled by beginning the macro with a let expression.
Figure 9.1 contains two versions of the macro before, which takes two objects
and a sequence, and returns true iff the first object occurs before the second in the
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sequence.1 The first definition is incorrect. Its initial let ensures that the form
passed as seq is only evaluated once, but it is not sufficient to avoid the following
problem:

> (before (progn (setq seq ’(b a)) ’a)
’b
’(a b))

NIL

This amounts to asking “Is a before b in (a b)?” If before were correct, it
would return true. Macroexpansion shows what really happens: the evaluation of
the first argument to < rearranges the list to be searched in the second.

(let ((seq ’(a b)))
(< (position (progn (setq seq ’(b a)) ’a)

seq)
(position ’b seq)))

To avoid this problem, it will suffice to evaluate all the arguments first in one big
let. The second definition in Figure 9.1 is thus safe from capture.

Unfortunately, the let technique works only in a narrow range of cases:
macros where

1. all the arguments at risk of capture are evaluated exactly once, and

2. none of the arguments need to be evaluated in the scope of bindings estab-
lished by the macro skeleton.

This rules out a great many macros. The proposed for macro violates both
conditions. However, we can use a variation of this scheme to make macros like
for safe from capture: to wrap its body formswithin a lambda-expressionoutside
of any locally created bindings.

Some macros, including those for iteration, yield expansions where expres-
sions appearing in the macro call will be evaluated within newly established
bindings. In the definition of for, for example, the body of the loop must be
evaluated within a do created by the macro. Variables occurring in the body of
the loop are thus vulnerable to capture by bindings established by the do. We
can protect variables in the body from such capture by wrapping the body in a
closure, and, within the loop, instead of inserting the expressions themselves,
simply funcalling the closure.

Figure 9.2 shows a version of forwhich uses this technique. Since the closure◦
1This macro is used only as an example. Really it should neither be implemented as a macro, nor

use the inefficient algorithm that it does. For a proper definition, see page 50.
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Vulnerable to capture:

(defmacro for ((var start stop) &body body)
‘(do ((,var ,start (1+ ,var))

(limit ,stop))
((> ,var limit))

,@body))

A correct version:

(defmacro for ((var start stop) &body body)
‘(do ((b #’(lambda (,var) ,@body))

(count ,start (1+ count))
(limit ,stop))

((> count limit))
(funcall b count)))

Figure 9.2: Avoiding capture with a closure.

is the first thing made by the expansion of a for, free symbols occurring in the
body will all refer to variables in the environment of the macro call. Now the do
communicateswith its body through the parameters of the closure. All the closure
needs to know from the do is the number of the current iteration, so it has only
one parameter, the symbol specified as the index variable in the macro call.

The technique of wrapping expressions in lambdas is not a universal remedy.
You can use it to protect a body of code, but closures won’t be any use when, for
example, there is a risk of the same variable being bound twice by the same let or
do (as in our original broken for). Fortunately, in this case, by rewriting for to
package its body in a closure, we also eliminated the need for the do to establish
bindings for the var argument. The var argument of the old for became the
parameter of the closure and could be replaced in the do by an actual symbol,
count. So the new definition of for is completely immune from capture, as the
test in Section 9.3 will show.

The disadvantage of using closures is that they might be less efficient. We
could be introducing another function call. Potentially worse, if the compiler
doesn’t give the closure dynamic extent, space for it will have to be allocated in
the heap at runtime.
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9.6 Avoiding Capture with Gensyms

There is one certain way to avoid macro argument capture: replacing capturable
symbols with gensyms. In the original version of for, problems arise when two
symbols inadvertently have the same name. If we want to avoid the possibility that
a macro skeleton will contain a symbol also used by the calling code, we might
hope to get away with using only strangely named symbols in macro definitions:

(defmacro for ((var start stop) &body body) ; wrong
‘(do ((,var ,start (1+ ,var))

(xsf2jsh ,stop))
((> ,var xsf2jsh))

,@body))

but this is no solution. It doesn’t eliminate the bug, just makes it less likely to
show. And not so very less likely at that—it’s still possible to imagine conflicts
arising in nested instances of the same macro.

We need some way to ensure that a symbol is unique. The Common Lisp
function gensym exists just for this purpose. It returns a symbol, called a gensym,◦
which is guaranteed not to be eq to any symbol either typed in or constructed by
a program.

How can Lisp promise this? In Common Lisp, each package keeps a list of
all the symbols known in that package. (For an introduction to packages, see
page 381.) A symbol which is on the list is said to be interned in the package.
Each call to gensym returns a unique, uninterned symbol. And since every symbol
seen by read gets interned, no one could type anything identical to a gensym.
Thus, if you begin the expression

(eq (gensym) ...

there is no way to complete it that will cause it to return true.
Asking gensym to make you a symbol is like taking the approach of choosing a

strangely named symbol one step further—gensymwill give you a symbol whose
name isn’t even in the phone book. When Lisp has to display a gensym,

> (gensym)
#:G47

what it prints is really just Lisp’s equivalent of “John Doe,” an arbitrary name
made up for something whose name is irrelevant. And to be sure that we don’t
have any illusions about this, gensyms are displayed preceded by a sharp-colon,
a special read-macro which exists just to cause an error if we ever try to read the
gensym in again.
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Vulnerable to capture:

(defmacro for ((var start stop) &body body)
‘(do ((,var ,start (1+ ,var))

(limit ,stop))
((> ,var limit))

,@body))

A correct version:

(defmacro for ((var start stop) &body body)
(let ((gstop (gensym)))
‘(do ((,var ,start (1+ ,var))

(,gstop ,stop))
((> ,var ,gstop))

,@body)))

Figure 9.3: Avoiding capture with gensym.

In CLTL2 Common Lisp, the number in a gensym’s printed representation
comes from *gensym-counter*, a global variable always bound to an integer.
By resetting this counter we can cause two gensyms to print the same

> (setq x (gensym))
#:G48
> (setq *gensym-counter* 48 y (gensym))
#:G48
> (eq x y)
NIL

but they won’t be identical.
Figure 9.3 contains a correct definition of for using gensyms. Now there is no

limit to clash with symbols in forms passed to the macro. It has been replaced
by a symbol gensymed on the spot. In each expansion of the macro, the place of
limit will be taken by a unique symbol created at expansion-time.

The correct definition of for is a complicated one to produce on the first try.
Finished code, like a finished theorem, often covers up a lot of trial and error. So
don’t worry if you have to write several versions of a macro. To begin writing
macros like for, you may want to write the first version without thinking about
variable capture, and then to go back and make gensyms for symbols which could
be involved in captures.
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9.7 Avoiding Capture with Packages

To some extent, it is possible to avoid capture by defining macros in their own
package. If you create a macros package and define for there, you can even use
the definition given first

(defmacro for ((var start stop) &body body)
‘(do ((,var ,start (1+ ,var))

(limit ,stop))
((> ,var limit))

,@body))

and call it safely from any other package. If you call for from another package,
say mycode, then even if you do use limit as the first argument, it will be
mycode::limit—a distinct symbol from macros::limit, which occurs in the
macro skeleton.

However, packages do not provide a very general solution to the problem of
capture. In the first place, macros are an integral part of some programs, and it
would be inconvenient to have to separate them in their own package. Second,
this approach offers no protection against capture by other code in the macros
package.

9.8 Capture in Other Name-Spaces

The previous sections have spoken of capture as if it were a problemwhich afflicted
variables exclusively. Although most capture is variable capture, the problem can
arise in Common Lisp’s other name-spaces as well.

Functions may also be locally bound, and function bindings are equally liable
to inadvertent capture. For example:

> (defun fn (x) (+ x 1))
FN
> (defmacro mac (x) ‘(fn ,x))
MAC
> (mac 10)
11
> (labels ((fn (y) (- y 1)))

(mac 10))
9

As predicted by the capture rule, the fn which occurs free in the skeleton of mac
is at risk of capture. When fn is locally rebound, mac returns a different value
than it does generally.
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What to do about this case? When the symbol at risk of capture is the name of
a built-in function or macro, then it’s reasonable to do nothing. In CLTL2 (p. 260) ◦
if the name of anything built-in is given a local function or macro binding, “the
consequences are undefined." So it wouldn’tmatter what yourmacro did—anyone
who rebinds built-in functions is going to have problems with more than just your
macros.

Otherwise, you can protect function names against macro argument capture
the same way you would protect variable names: by using gensyms as names
for any functions given local definitions by the macro skeleton. Avoiding free
symbol capture, as in the case above, is a bit more difficult. The way to protect
variables against free symbol capture was to give them distinctly global names:
e.g. *warnings* instead of w. This solution is not practical for functions, because
there is no convention for distinguishing the names of global functions—most
functions are global. If you’re concerned about a macro being called in an
environmentwhere a function it needsmight be locally redefined, the best solution
is probably to put your code in a distinct package.

Block-names are also liable to capture, as are the tags used by go and throw.
When yourmacros need such symbols,you should use gensyms,as in the definition
of our-do on page 98.

Remember also that operators like do are implicitly enclosed in a block named
nil. Thus a return or return-from nil within a do returns from the do, not
the containing expression:

> (block nil
(list ’a

(do ((x 1 (1+ x)))
(nil)

(if (> x 5)
(return-from nil x)
(princ x)))))

12345
(A 6)

If do didn’t create a block named nil, this example would have returned just 6,
rather than (A 6).

The implicit block in do is not a problem, because do is advertised to behave
this way. However, you should realize that if you write macros which expand into
dos, they will capture the block name nil. In a macro like for, a return or
return-from nil will return from the for expression, not the enclosing block.
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9.9 Why Bother?

Some of the preceding examples are pretty pathological. Looking at them, one
might be tempted to say “variable capture is so unlikely—why even worry about
it?” There are two ways to answer this question. One is with another question:
why write programs with small bugs when you could write programs with no
bugs?

The longer answer is to point out that in real applications it’s dangerous to
assume anything about the way your code will be used. Any Lisp program has
what is now called an “open architecture.” If you’re writing code other people
will use, they may use it in ways you’d never anticipate. And it’s not just people
you have to worry about. Programs write programs too. It may be that no human
would write code like

(before (progn (setq seq ’(b a)) ’a)
’b
’(a b))

but code generated by programs often looks like this. Even if individual macros
generate simple and reasonable-looking expansions, once you begin to nest macro
calls, the expansions can become large programs which look like nothing any
human would write. Under such circumstances, it is worth defending against
cases, however contrived, which might make your macros expand incorrectly.

In the end, avoiding variable capture is not very difficult anyway. It soon be-
comes second-nature. The classic Common Lisp defmacro is like a cook’s knife:
an elegant idea which seems dangerous, but which experts use with confidence.
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Other Macro Pitfalls

Writing macros requires an extra degree of caution. A function is isolated in
its own lexical world, but a macro, because it is expanded into the calling code,
can give the user an unpleasant surprise unless it is carefully written. Chapter 9
explained variable capture, the biggest such surprise. This chapter discusses four
more problems to avoid when defining macros.

10.1 Number of Evaluations

Several incorrect versions of for appeared in the previous chapter. Figure 10.1
shows two more, accompanied by a correct version for comparison.

Though not vulnerable to capture, the second for contains a bug. It will
generate an expansion in which the form passed as stopwill be evaluated on each
iteration. In the best case, this kind of macro is inefficient, repeatedly doing what
it could have done just once. If stop has side-effects, the macro could actually
produce incorrect results. For example, this loop will never terminate, because
the goal recedes on each iteration:

> (let ((x 2))
(for (i 1 (incf x))

(princ i)))
12345678910111213...

In writing macros like for, one must remember that the arguments to a macro
are forms, not values. Depending on where they appear in the expansion, they

133
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A correct version:

(defmacro for ((var start stop) &body body)
(let ((gstop (gensym)))
‘(do ((,var ,start (1+ ,var))

(,gstop ,stop))
((> ,var ,gstop))

,@body)))

Subject to multiple evaluations:

(defmacro for ((var start stop) &body body)
‘(do ((,var ,start (1+ ,var)))

((> ,var ,stop))
,@body))

Incorrect order of evaluation:

(defmacro for ((var start stop) &body body)
(let ((gstop (gensym)))
‘(do ((,gstop ,stop)

(,var ,start (1+ ,var)))
((> ,var ,gstop))

,@body)))

Figure 10.1: Controlling argument evaluation.

could be evaluated more than once. In this case, the solution is to bind a variable
to the value returned by the stop form, and refer to the variable during the loop.

Unless they are clearly intended for iteration, macros should ensure that ex-
pressions are evaluated exactly as many times as they appear in the macro call.
There are obvious cases in which this rule does not apply: the Common Lisp
or would be much less useful (it would become a Pascal or) if all its arguments
were always evaluated. But in such cases the user knows how many evaluations
to expect. This isn’t so with the second version of for: the user has no reason to
suppose that the stop form is evaluated more than once, and in fact there is no
reason that it should be. A macro written like the second version of for is most
likely written that way by mistake.

Unintended multiple evaluation is a particularly difficult problem for macros
built on setf. Common Lisp provides several utilities to make writing such
macros easier. The problem, and the solution, are discussed in Chapter 12.
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10.2 Order of Evaluation

The order in which expressions are evaluated, though not as important as the
number of times they are evaluated, can sometimes become an issue. In Common
Lisp function calls, arguments are evaluated left-to-right:

> (setq x 10)
10
> (+ (setq x 3) x)
6

and it is good practice for macros to do the same. Macros should usually ensure
that expressions are evaluated in the same order that they appear in the macro call.

In Figure 10.1, the third version of for also contains a subtle bug. The
parameter stop will be evaluated before start, even though they appear in the
opposite order in the macro call:

> (let ((x 1))
(for (i x (setq x 13))
(princ i)))

13
NIL

Thismacro gives a disconcerting impression of going back in time. The evaluation
of the stop form influences the value returned by the start form, even though
the start form appears first textually.

The correct version of for ensures that its arguments will be evaluated in the
order in which they appear:

> (let ((x 1))
(for (i x (setq x 13))
(princ i)))

12345678910111213
NIL

Now setting x in the stop form has no effect on the value returned by the previous
argument.

Although the preceding example is a contrived one, there are cases in which
this sort of problem might really happen, and such a bug would be extremely
difficult to find. Perhaps few people would write code in which the evaluation of
one argument to a macro influenced the value returned by another, but people may
do by accident things that they would never do on purpose. As well as having to
work right when used as intended, a utility must not mask bugs. If anyone wrote
code like the foregoing examples, it would probably be by mistake, but the correct
version of for will make the mistake easier to detect.
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10.3 Non-functional Expanders

Lisp expects code which generates macro expansions to be purely functional, in
the sense described in Chapter 3. Expander code should depend on nothing but
the forms passed to it as arguments, and should not try to have an effect on the
world except by returning values.

As of CLTL2 (p. 685), it is safe to assume that macro calls in compiled codewill
not be re-expanded at runtime. Otherwise, Common Lisp makes no guarantees
about when, or how often, a macro call will be expanded. It is considered an error
for the expansion of a macro to vary depending on either. For example, suppose
we wanted to count the number of times some macro is used. We can’t simply
do a search through the source files, because the macro might be called in code
which is generated by the program. We might therefore want to define the macro
as follows:

(defmacro nil! (x) ; wrong
(incf *nil!s*)
‘(setf ,x nil))

With this definition, the global *nil!s* will be incremented each time a call
to nil! is expanded. However, we are mistaken if we expect the value of this
variable to tell us how often nil! was called. A given call can be, and often
is, expanded more than once. For example, a preprocessor which performed
transformations on your source code might have to expand the macro calls in an
expression before it could decide whether or not to transform it.

As a general rule, expander code shouldn’t depend on anything except its
arguments. So any macro which builds its expansion out of strings, for example,
should be careful not to assume anything about what the package will be at the
time of expansion. This concise but rather pathological example,

(defmacro string-call (opstring &rest args) ; wrong
‘(,(intern opstring) ,@args))

defines a macro which takes the print name of an operator and expands into a call
to it:

> (defun our+ (x y) (+ x y))
OUR+
> (string-call "OUR+" 2 3)
5

The call to intern takes a string and returns the corresponding symbol. However,
if we omit the optional package argument, it does so in the current package. The
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expansion will thus depend on the package at the time the expansion is generated,
and unless our+ is visible in that package, the expansion will be a call to an
unknown function.

Miller and Benson’s Lisp Style and Design mentions one particularly ugly ◦
example of problems arising from side-effects in expander code. In Common
Lisp, as of CLTL2 (p. 78), the lists bound to &rest parameters are not guaranteed
to be freshly made. They may share structure with lists elsewhere in the program.
In consequence, you shouldn’t destructively modify &rest parameters, because
you don’t know what else you’ll be modifying.

This possibility affects both functions and macros. With functions, problems
would arise when using apply. In a valid implementation of Common Lisp the
following could happen. Suppose we define a function et-al, which returns a
list of its arguments with et al added to the end:

(defun et-al (&rest args)
(nconc args (list ’et ’al)))

If we called this function normally, it would seem to work fine:

> (et-al ’smith ’jones)
(SMITH JONES ET AL)

However, if we called it via apply, it could alter existing data structures:

> (setq greats ’(leonardo michelangelo))
(LEONARDO MICHELANGELO)
> (apply #’et-al greats)
(LEONARDO MICHELANGELO ET AL)
> greats
(LEONARDO MICHELANGELO ET AL)

At least, a valid implementation of Common Lisp could do this, though so far
none seems to.

For macros, the danger is greater. A macro which altered an &rest parameter
could thereby alter the macro call. That is, you could end up with inadvertently
self-rewriting programs. The danger is also more real—it actually happens under
existing implementations. If we define a macro which nconcs something onto its
&rest argument1

(defmacro echo (&rest args)
‘’,(nconc args (list ’amen)))

1‘’,(foo) is equivalent to ‘(quote ,(foo)).
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and then define a function that calls it:

(defun foo () (echo x))

in one widely used Common Lisp, the following will happen:

> (foo)
(X AMEN AMEN)
> (foo)
(X AMEN AMEN AMEN)

Not only does foo return the wrong result, it returns a different result each time,
because each macroexpansion alters the definition of foo.

This example also illustrates the point made earlier about multiple expansions
of a givenmacro call. In this particular implementation, thefirst call to foo returns
a lists with two amens. For some reason this implementation expanded the macro
call once when foo was defined, as well as once in each of the succeeding calls.

It would be safer to have defined echo as:

(defmacro echo (&rest args)
‘’(,@args amen))

because a comma-at is equivalent to an append rather than an nconc. After
redefining this macro, foo will have to be redefined as well, even if it wasn’t
compiled, because the previous version of echo caused it to be rewritten.

In macros, it’s not only &rest parameters which are subject to this danger.
Any macro argument which is a list should be left alone. If we define a macro
which modifies one of its arguments, and a function which calls it,

(defmacro crazy (expr) (nconc expr (list t)))

(defun foo () (crazy (list)))

then the source code of the calling function could get modified, as happens in one
implementation the first time we call it:

> (foo)
(T T)

This happens in compiled as well as interpreted code.
The upshot is, don’t try to avoid consing by destructivelymodifying parameter

list structure. The resulting programs won’t be portable, if they run at all. If you
want to avoid consing in a function which takes a variable number of arguments,
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one solution is to use a macro, and thereby shift the consing forward to compile-
time. For this application of macros, see Chapter 13.

One should also avoid performing destructive operations on the expressions
returned by macro expanders, if these expressions incorporate quoted lists. This
is not a restriction on macros per se, but an instance of the principle outlined in
Section 3.3.

10.4 Recursion

Sometimes it’s natural to define a function recursively. There’s something inher-
ently recursive about a function like this:

(defun our-length (x)
(if (null x)

0
(1+ (our-length (cdr x)))))

This definition somehow seems more natural (though probably slower) than the
iterative equivalent:

(defun our-length (x)
(do ((len 0 (1+ len))

(y x (cdr y)))
((null y) len)))

A function which is neither recursive, nor part of some mutually recursive set
of functions, can be transformed into a macro by the simple technique described
in Section 7.10. However, just inserting backquotes and commaswon’t work with
a recursive function. Let’s take the built-in nth as an example. (For simplicity,
our versions of nth will do no error-checking.) Figure 10.2 shows a mistaken
attempt to define nth as a macro. Superficially, nthb appears to be equivalent to
ntha, but a program containing a call to nthb would not compile, because the
expansion of the call would never terminate.

In general, it’s fine for macros to contain references to other macros, so long as
expansion terminates somewhere. The trouble with nthb is that every expansion
contains a reference to nthb itself. The function version,ntha, terminates because
it recurses on the value of n, which is decremented on each recursion. But
macroexpansion only has access to forms, not to their values. When the compiler
tries to macroexpand, say, (nthb x y), the first expansion will yield

(if (= x 0)
(car y)
(nthb (- x 1) (cdr y)))
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This will work:

(defun ntha (n lst)
(if (= n 0)

(car lst)
(ntha (- n 1) (cdr lst))))

This won’t compile:

(defmacro nthb (n lst)
‘(if (= ,n 0)

(car ,lst)
(nthb (- ,n 1) (cdr ,lst))))

Figure 10.2: Mistaken analogy to a recursive function.

which will in turn expand into:

(if (= x 0)
(car y)
(if (= (- x 1) 0)

(car (cdr y))
(nthb (- (- x 1) 1) (cdr (cdr y)))))

and so on into an infinite loop. It’s fine for a macro to expand into a call to itself,
just so long as it doesn’t always do so.

The dangerous thing about recursivemacros like nthb is that they usuallywork
fine under the interpreter. Then when you finally have your programworking and
you try to compile it, it won’t even compile. Not only that, but there will usually
be no indication that the problem is due to a recursive macro; the compiler will
simply go into an infinite loop and leave you to figure out what went wrong.

In this case, ntha is tail-recursive. A tail-recursive function can easily be
transformed into an iterative equivalent, and then used as a model for a macro. A
macro like nthb could be written

(defmacro nthc (n lst)
‘(do ((n2 ,n (1- n2))

(lst2 ,lst (cdr lst2)))
((= n2 0) (car lst2))))

so it is not impossible in principle to duplicate a recursive function with a macro.
However, transforming more complicated recursive functions could be difficult,
or even impossible.
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(defmacro nthd (n lst)
‘(nth-fn ,n ,lst))

(defun nth-fn (n lst)
(if (= n 0)

(car lst)
(nth-fn (- n 1) (cdr lst))))

(defmacro nthe (n lst)
‘(labels ((nth-fn (n lst)

(if (= n 0)
(car lst)
(nth-fn (- n 1) (cdr lst)))))

(nth-fn ,n ,lst)))

Figure 10.3: Two ways to fix the problem.

Depending on what you need a macro for, you may find it sufficient to use
instead a combination of macro and function. Figure 10.3 shows two ways to
make what appears to be a recursive macro. The first strategy, embodied by nthd,
is simply to make the macro expand into a call to a recursive function. If, for
example, you need a macro only to save users the trouble of quoting arguments,
then this approach should suffice.

If you need a macro because you want its whole expansion to be inserted
into the lexical environment of the macro call, then you would more likely want
to follow the example of nthe. The built-in labels special form (Section 2.7)
creates a local function definition. While each expansion of nthc will call the
globally defined function nth-fn, each expansion of nthe will have its own
version of such a function within it.

Although you can’t translate a recursive function directly into amacro, you can
write a macro whose expansion is recursively generated. The expansion function
of a macro is a regular Lisp function, and can of course be recursive. For example,
if we were to define a version of the built-in or, we would want to use a recursive
expansion function.

Figure 10.4 shows two ways of defining recursive expansion functions for or.
The macro ora calls the recursive function or-expand to generate its expansion.
This macro will work, and so will the equivalent orb. Although orb recurses, it
recurses on the arguments to the macro (which are available at macroexpansion
time), not upon their values (which aren’t). It might seem as if the expansion
would contain a reference to orb itself, but the call to orb generated by one
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(defmacro ora (&rest args)
(or-expand args))

(defun or-expand (args)
(if (null args)

nil
(let ((sym (gensym)))

‘(let ((,sym ,(car args)))
(if ,sym

,sym
,(or-expand (cdr args)))))))

(defmacro orb (&rest args)
(if (null args)

nil
(let ((sym (gensym)))

‘(let ((,sym ,(car args)))
(if ,sym

,sym
(orb ,@(cdr args)))))))

Figure 10.4: Recursive expansion functions.

macroexpansion step will be replaced by a let in the next one, yielding in the
final expansion nothing more than a nested stack of lets; (orb x y) expands
into code equivalent to:

(let ((g2 x))
(if g2

g2
(let ((g3 y))
(if g3 g3 nil))))

In fact, ora and orb are equivalent, and which style to use is just a matter of
personal preference.
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Classic Macros

This chapter shows how to define the most commonly used types of macros.
They fall into three categories—with a fair amount of overlap. The first group
are macros which create context. Any operator which causes its arguments to
be evaluated in a new context will probably have to be defined as a macro. The
first two sections describe the two basic types of context, and show how to define
macros for each.

The next three sections describe macros for conditional and repeated evalua-
tion. An operator whose arguments are to be evaluated less than once, or more
than once, must also be defined as a macro. There is no sharp distinction between
operators for conditional and repeated evaluation: some of the examples in this
chapter do both (as well as binding). The final section explains another similarity
between conditional and repeated evaluation: in some cases, both can be done
with functions.

11.1 Creating Context

Context here has two senses. One sort of context is a lexical environment. The
let special form creates a new lexical environment; the expressions in the body
of a let will be evaluated in an environment which may contain new variables.
If x is set to a at the toplevel, then

(let ((x ’b)) (list x))

will nonetheless return (b), because the call to list will be made in an environ-
ment containing a new x, whose value is b.

143
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(defmacro our-let (binds &body body)
‘((lambda ,(mapcar #’(lambda (x)

(if (consp x) (car x) x))
binds)

,@body)
,@(mapcar #’(lambda (x)

(if (consp x) (cadr x) nil))
binds)))

Figure 11.1: Macro implementation of let.

An operator which is to have a body of expressions must usually be defined as
a macro. Except for cases like prog1 and progn, the purpose of such an operator
will usually be to cause the body to be evaluated in some new context. A macro
will be needed to wrap context-creating code around the body, even if the context
does not include new lexical variables.

Figure 11.1 shows how let could be defined as a macro on lambda. An
our-let expands into a function application—

(our-let ((x 1) (y 2))
(+ x y))

expands into

((lambda (x y) (+ x y)) 1 2)

Figure 11.2 contains three new macros which establish lexical environments.
Section 7.5 used when-bind as an example of parameter list destructuring, so this
macro has already been described on page 94. The more general when-bind*
takes a list of pairs of the form (symbol expression)—the same form as the
first argument to let. If any expression returns nil, the whole when-bind*
expression returns nil. Otherwise its body will be evaluated with each symbol
bound as if by let*:

> (when-bind* ((x (find-if #’consp ’(a (1 2) b)))
(y (find-if #’oddp x)))

(+ y 10))
11

Finally, the macro with-gensyms is itself for use in writing macros. Many
macro definitions begin with the creation of gensyms, sometimes quite a number
of them. The macro with-redraw (page 115) had to create five:
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(defmacro when-bind ((var expr) &body body)
‘(let ((,var ,expr))

(when ,var
,@body)))

(defmacro when-bind* (binds &body body)
(if (null binds)

‘(progn ,@body)
‘(let (,(car binds))

(if ,(caar binds)
(when-bind* ,(cdr binds) ,@body)))))

(defmacro with-gensyms (syms &body body)
‘(let ,(mapcar #’(lambda (s)

‘(,s (gensym)))
syms)

,@body))

Figure 11.2: Macros which bind variables.

(defmacro with-redraw ((var objs) &body body)
(let ((gob (gensym))

(x0 (gensym)) (y0 (gensym))
(x1 (gensym)) (y1 (gensym)))

...))

Such definitions are simplified by with-gensyms, which binds a whole list of
variables to gensyms. With the new macro we would write just:

(defmacro with-redraw ((var objs) &body body)
(with-gensyms (gob x0 y0 x1 y1)
...))

This new macro will be used throughout the remaining chapters.
If we want to bind some variables and then, depending on some condition,

evaluate one of a set of expressions, we just use a conditional within a let:

(let ((sun-place ’park) (rain-place ’library))
(if (sunny)

(visit sun-place)
(visit rain-place)))
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(defmacro condlet (clauses &body body)
(let ((bodfn (gensym))

(vars (mapcar #’(lambda (v) (cons v (gensym)))
(remove-duplicates
(mapcar #’car

(mappend #’cdr clauses))))))
‘(labels ((,bodfn ,(mapcar #’car vars)

,@body))
(cond ,@(mapcar #’(lambda (cl)

(condlet-clause vars cl bodfn))
clauses)))))

(defun condlet-clause (vars cl bodfn)
‘(,(car cl) (let ,(mapcar #’cdr vars)

(let ,(condlet-binds vars cl)
(,bodfn ,@(mapcar #’cdr vars))))))

(defun condlet-binds (vars cl)
(mapcar #’(lambda (bindform)

(if (consp bindform)
(cons (cdr (assoc (car bindform) vars))

(cdr bindform))))
(cdr cl)))

Figure 11.3: Combination of cond and let.

Unfortunately, there is no convenient idiom for the opposite situation, where
we always want to evaluate the same code, but where the bindings must vary
depending on some condition.

Figure 11.3 contains a macro intended for such situations. As its name
suggests, condlet behaves like the offspring of cond and let. It takes as
arguments a list of binding clauses, followed by a body of code. Each of the
binding clauses is guarded by a test expression; the body of code will be evaluated
with the bindings specified by the first binding clausewhose test expression returns
true. Variables which occur in some clauses and not others will be bound to nil
if the successful clause does not specify bindings for them:
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> (condlet (((= 1 2) (x (princ ’a)) (y (princ ’b)))
((= 1 1) (y (princ ’c)) (x (princ ’d)))
(t (x (princ ’e)) (z (princ ’f))))

(list x y z))
CD
(D C NIL)

The definition of condlet can be understood as a generalization of the def-
inition of our-let. The latter makes its body into a function, which is applied
to the results of evaluating the initial-value forms. A condlet expands into code
which defines a local function with labels; within it a cond clause determines
which set of initial-value forms will be evaluated and passed to the function.

Notice that the expander uses mappend instead of mapcan to extract the
variable names from the binding clauses. This is because mapcan is destructive,
and as Section 10.3 warned, it is dangerous to modify parameter list structure.

11.2 The with-Macro

There is another kind of context besides a lexical environment. In the broader
sense, the context is the state of theworld, including the values of special variables,
the contents of data structures, and the state of things outside Lisp. Operators
which build this kind of context must be defined as macros too, unless their code
bodies are to be packaged up in closures.

The names of context-building macros often begin with with-. The most
commonly used macro of this type is probably with-open-file. Its body is
evaluated with a newly opened file bound to a user-supplied variable:

(with-open-file (s "dump" :direction :output)
(princ 99 s))

After evaluation of this expression the file "dump" will automatically be closed,
and its contents will be the two characters "99".

This operator clearly has to be defined as amacro,because it bindss. However,
operators which cause forms to be evaluated in a new context must be defined as
macros anyway. The ignore-errorsmacro, new in CLTL2, causes its arguments
to be evaluated as if in a progn. If an error occurs at any point, the whole
ignore-errors form simply returns nil. (This would be useful, for example,
when reading input typed by the user.) Though ignore-errors creates no
variables, it still must be defined as a macro, because its arguments are evaluated
in a new context.

Generally, macros which create context will expand into a block of code;
additional expressions may be placed before the body, after it, or both. If code
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occurs after the body, its purpose may be to leave the system in a consistent
state—to clean up something. For example, with-open-file has to close the
file it opened. In such situations, it is typical to make the context-creating macro
expand into an unwind-protect.

The purpose of unwind-protect is to ensure that certain expressions are
evaluated even if execution is interrupted. It takes one or more arguments, which
are evaluated in order. If all goes smoothly it will return the value of the first
argument, like a prog1. The difference is, the remaining arguments will be
evaluated even if an error or throw interrupts evaluation of the first.

> (setq x ’a)
A
> (unwind-protect

(progn (princ "What error?")
(error "This error."))

(setq x ’b))
What error?
>>Error: This error.

The unwind-protect form as a whole yields an error. However, after returning
to the toplevel, we notice that the second argument still got evaluated:

> x
B

Because with-open-file expands into an unwind-protect, the file it opens
will usually be closed even if an error occurs during the evaluation of its body.

Context-creating macros are mostly written for specific applications. As an
example, suppose we are writing a program which deals with multiple, remote
databases. The program talks to one database at a time, indicated by the global
variable *db*. Before using a database, we have to lock it, so that no one else can
use it at the same time. When we are finished we have to release the lock. If we
want the value of the query q on the database db, we might say something like:

(let ((temp *db*))
(setq *db* db)
(lock *db*)
(prog1 (eval-query q)

(release *db*)
(setq *db* temp)))

With a macro we can hide all this bookkeeping. Figure 11.4 defines a macro
which will allow us to deal with databases at a higher level of abstraction. Using
with-db, we would say just:
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Pure macro:

(defmacro with-db (db &body body)
(let ((temp (gensym)))
‘(let ((,temp *db*))

(unwind-protect
(progn
(setq *db* ,db)
(lock *db*)
,@body)

(progn
(release *db*)
(setq *db* ,temp))))))

Combination of macro and function:

(defmacro with-db (db &body body)
(let ((gbod (gensym)))
‘(let ((,gbod #’(lambda () ,@body)))

(declare (dynamic-extent ,gbod))
(with-db-fn *db* ,db ,gbod))))

(defun with-db-fn (old-db new-db body)
(unwind-protect
(progn
(setq *db* new-db)
(lock *db*)
(funcall body))

(progn
(release *db*)
(setq *db* old-db))))

Figure 11.4: A typical with- macro.

(with-db db
(eval-query q))

Calling with-db is also safer, because it expands into an unwind-protect
instead of a simple prog1.

The two definitions of with-db in Figure 11.4 illustrate two possible ways
to write this kind of macro. The first is a pure macro, the second a combination
of a function and a macro. The second approach becomes more practical as the
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(defmacro if3 (test t-case nil-case ?-case)
‘(case ,test

((nil) ,nil-case)
(? ,?-case)
(t ,t-case)))

(defmacro nif (expr pos zero neg)
(let ((g (gensym)))
‘(let ((,g ,expr))

(cond ((plusp ,g) ,pos)
((zerop ,g) ,zero)
(t ,neg)))))

Figure 11.5: Macros for conditional evaluation.

desired with-macro grows in complexity.
In CLTL2 Common Lisp, the dynamic-extent declaration allows the closure

containing the body to be allocated more efficiently (in CLTL1 implementations,
it will be ignored). We only need this closure for the duration of the call to
with-db-fn, and the declaration says as much, allowing the compiler to allocate
space for it on the stack. This space will be reclaimed automatically on exit from
the let expression, instead of being reclaimed later by the garbage-collector.

11.3 Conditional Evaluation

Sometimes we want an argument in a macro call to be evaluated only under
certain conditions. This is beyond the ability of functions, which always evaluate
all their arguments. Built-in operators like if, and, and cond protect some of
their arguments from evaluation unless other arguments return certain values. For
example, in this expression

(if t
’phew
(/ x 0))

the third argument would cause a division-by-zero error if it were evaluated. But
since only the first two arguments ever will be evaluated, the if as a whole will
always safely return phew.

We can create new operators of this sort by writing macros which expand into
calls to the existing ones. The two macros in Figure 11.5 are two of many possible
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variations on if. The definition of if3 shows how we could define a conditional
for a three-valued logic. Instead of treating nil as false and everything else
as true, this macro considers three categories of truth: true, false, and uncertain,
represented as ?. It might be used as in the following description of a five year-old:

(while (not sick)
(if3 (cake-permitted)

(eat-cake)
(throw ’tantrum nil)
(plead-insistently)))

The new conditional expands into a case. (The nil key has to be enclosed within
a list because a nil key alone would be ambiguous.) Only one of the last three
arguments will be evaluated, depending on the value of the first.

The name nif stands for “numeric if.” Another implementation of this macro
appeared on page 86. It takes a numeric expression as its first argument, and
depending on its sign evaluates one of the remaining three arguments.

> (mapcar #’(lambda (x)
(nif x ’p ’z ’n))

’(0 1 -1))
(Z P N)

Figure 11.6 contains several more macros which take advantage of conditional
evaluation. The macro in is to test efficiently for set membership. When you
want to test whether an object is one of a set of alternatives, you could express the
query as a disjunction:

(let ((x (foo)))
(or (eql x (bar)) (eql x (baz))))

or you could express it in terms of set membership:

(member (foo) (list (bar) (baz)))

The latter is more abstract, but less efficient. The member expression incurs
unnecessary costs from two sources. It conses, because it must assemble the
alternatives into a list for member to search. And to form the alternatives into a
list they all have to be evaluated, even though some of the values may never be
needed. If the value of (foo) is equal to the value of (bar), then there is no need
to evaluate (baz). Whatever its conceptual advantages, this is not a good way to
use member. We can get the same abstraction more efficiently with a macro: in
combines the abstraction of member with the efficiency of or. The equivalent in
expression
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(defmacro in (obj &rest choices)
(let ((insym (gensym)))
‘(let ((,insym ,obj))

(or ,@(mapcar #’(lambda (c) ‘(eql ,insym ,c))
choices)))))

(defmacro inq (obj &rest args)
‘(in ,obj ,@(mapcar #’(lambda (a)

‘’,a)
args)))

(defmacro in-if (fn &rest choices)
(let ((fnsym (gensym)))
‘(let ((,fnsym ,fn))

(or ,@(mapcar #’(lambda (c)
‘(funcall ,fnsym ,c))

choices)))))

(defmacro >case (expr &rest clauses)
(let ((g (gensym)))
‘(let ((,g ,expr))

(cond ,@(mapcar #’(lambda (cl) (>casex g cl))
clauses)))))

(defun >casex (g cl)
(let ((key (car cl)) (rest (cdr cl)))
(cond ((consp key) ‘((in ,g ,@key) ,@rest))

((inq key t otherwise) ‘(t ,@rest))
(t (error "bad >case clause")))))

Figure 11.6: Macros for conditional evaluation.

(in (foo) (bar) (baz))

has the same shape as the member expression, but expands into

(let ((#:g25 (foo)))
(or (eql #:g25 (bar))

(eql #:g25 (baz))))

As is often the case, when faced with a choice between a clean idiom and an
efficient one, we go between the horns of the dilemma by writing a macro which
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transforms the former into the latter.
Pronounced “in queue,” inq is a quoting variant of in, as setq used to be of

set. The expression

(inq operator + - *)

expands into

(in operator ’+ ’- ’*)

As member does by default, in and inq use eql to test for equality. When
you want to use some other test—or any other function of one argument—you
can use the more general in-if. What in is to member, in-if is to some. The
expression

(member x (list a b) :test #’equal)

can be duplicated by

(in-if #’(lambda (y) (equal x y)) a b)

and

(some #’oddp (list a b))

becomes

(in-if #’oddp a b)

Using a combination of cond and in, we can define a useful variant of case.
The CommonLisp casemacro assumes that its keys are constants. Sometimeswe
may want the behavior of a case expression, but with keys which are evaluated.
For such situations we define >case, like case except that the keys guarding
each clause are evaluated before comparison. (The > in the name is intended to
suggest the arrow notation used to represent evaluation.) Because >case uses in,
it evaluates no more of the keys than it needs to.

Since keys can be Lisp expressions, there is no way to tell if (x y) is a call or
a list of two keys. To avoid ambiguity, keys (other than t and otherwise) must
always be given in a list, even if there is only one of them. In case expressions,
nil may not appear as the car of a clause on grounds of ambiguity. In a >case
expression, nil is no longer ambiguous as the car of a clause, but it does mean
that the rest of the clause will never be evaluated.

For clarity, the code that generates the expansion of each >case clause is
defined as a separate function, >casex. Notice that >casex itself uses inq.
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(defmacro while (test &body body)
‘(do ()

((not ,test))
,@body))

(defmacro till (test &body body)
‘(do ()

(,test)
,@body))

(defmacro for ((var start stop) &body body)
(let ((gstop (gensym)))
‘(do ((,var ,start (1+ ,var))

(,gstop ,stop))
((> ,var ,gstop))

,@body)))

Figure 11.7: Simple iteration macros.

11.4 Iteration

Sometimes the trouble with functions is not that their arguments are always
evaluated, but that they are evaluated only once. Because each argument to a
function will be evaluated exactly once, if we want to define an operator which
takes some body of expressions and iterates through them, we will have to define
it as a macro.

The simplest example would be a macro which evaluated its arguments in
sequence forever:

(defmacro forever (&body body)
‘(do ()

(nil)
,@body))

This is just what the built-in loop macro does if you give it no loop keywords. It
might seem that there is not much future (or too much future) in looping forever.
But combined with block and return-from, this kind of macro becomes the
most natural way to express loops where termination is always in the nature of an
emergency.

Some of the simplest macros for iteration are shown in Figure 11.7. We
have already seen while (page 91), whose body will be evaluated while a test
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expression returns true. Its converse is till, which does the same while a test
expression returns false. Finally for, also seen before (page 129), iterates for a
range of numbers.

By defining these macros to expand into dos, we enable the use of go and
returnwithin their bodies. As do inherits these rights from block and tagbody,
while, till, and for inherit them from do. As explained on page 131, the nil
tag of the implicit block around do will be captured by the macros defined in
Figure 11.7. This ismore of a feature than a bug, but it should at least bementioned
explicitly.

Macros are indispensable when we need to define more powerful iteration
constructs. Figure 11.8 contains two generalizations of dolist; both evaluate
their body with a tuple of variables bound to successive subsequences of a list.
For example, given two parameters, do-tuples/owill iterate by pairs:

> (do-tuples/o (x y) ’(a b c d)
(princ (list x y)))

(A B)(B C)(C D)
NIL

Given the same arguments, do-tuples/c will do the same thing, then wrap
around to the front of the list:

> (do-tuples/c (x y) ’(a b c d)
(princ (list x y)))

(A B)(B C)(C D)(D A)
NIL

Both macros return nil, unless an explicit return occurs within the body.
This kind of iteration is often needed in programswhich deal with some notion

of a path. The suffixes /o and /c are intended to suggest that the two versions
traverse open and closed paths, respectively. For example, if points is a list of
points and (drawline x y) draws the line between x and y, then to draw the path
from the first point to the last we write.

(do-tuples/o (x y) points (drawline x y))

whereas, if points is a list of the vertices of a polygon, to draw its perimeter we
write

(do-tuples/c (x y) points (drawline x y))

The list of parameters given as the first argument can be any length, and
iteration will proceed by tuples of that length. If just one parameter is given, both
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(defmacro do-tuples/o (parms source &body body)
(if parms

(let ((src (gensym)))
‘(prog ((,src ,source))

(mapc #’(lambda ,parms ,@body)
,@(map0-n #’(lambda (n)

‘(nthcdr ,n ,src))
(1- (length parms))))))))

(defmacro do-tuples/c (parms source &body body)
(if parms

(with-gensyms (src rest bodfn)
(let ((len (length parms)))
‘(let ((,src ,source))

(when (nthcdr ,(1- len) ,src)
(labels ((,bodfn ,parms ,@body))
(do ((,rest ,src (cdr ,rest)))

((not (nthcdr ,(1- len) ,rest))
,@(mapcar #’(lambda (args)

‘(,bodfn ,@args))
(dt-args len rest src))

nil)
(,bodfn ,@(map1-n #’(lambda (n)

‘(nth ,(1- n)
,rest))

len))))))))))

(defun dt-args (len rest src)
(map0-n #’(lambda (m)

(map1-n #’(lambda (n)
(let ((x (+ m n)))
(if (>= x len)

‘(nth ,(- x len) ,src)
‘(nth ,(1- x) ,rest))))

len))
(- len 2)))

Figure 11.8: Macros for iteration by subsequences.
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(do-tuples/c (x y z) ’(a b c d)
(princ (list x y z)))

expands into:

(let ((#:g2 ’(a b c d)))
(when (nthcdr 2 #:g2)
(labels ((#:g4 (x y z)

(princ (list x y z))))
(do ((#:g3 #:g2 (cdr #:g3)))

((not (nthcdr 2 #:g3))
(#:g4 (nth 0 #:g3)

(nth 1 #:g3)
(nth 0 #:g2))

(#:g4 (nth 1 #:g3)
(nth 0 #:g2)
(nth 1 #:g2))

nil)
(#:g4 (nth 0 #:g3)

(nth 1 #:g3)
(nth 2 #:g3))))))

Figure 11.9: Expansion of a call to do-tuples/c.

degenerate to dolist:

> (do-tuples/o (x) ’(a b c) (princ x))
ABC
NIL
> (do-tuples/c (x) ’(a b c) (princ x))
ABC
NIL

The definition of do-tuples/c is more complex than that of do-tuples/o,
because it has to wrap around on reaching the end of the list. If there are n
parameters, do-tuples/cmust do n−1 more iterations before returning:

> (do-tuples/c (x y z) ’(a b c d)
(princ (list x y z)))

(A B C)(B C D)(C D A)(D A B)
NIL
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> (do-tuples/c (w x y z) ’(a b c d)
(princ (list w x y z)))

(A B C D)(B C D A)(C D A B)(D A B C)
NIL

The expansion of the former call to do-tuples/c is shown in Figure 11.9. The
hard part to generate is the sequence of calls representing the wrap around to the
front of the list. These calls (in this case, two of them) are generated by dt-args.

11.5 Iteration with Multiple Values

The built-in do macros have been around longer than multiple return values.
Fortunately do can evolve to suit the new situation, because the evolution of Lisp
is in the hands of the programmer. Figure 11.10 contains a version of do* adapted
for multiple values. With mvdo*, each of the initial clauses can bind more than
one variable:

> (mvdo* ((x 1 (1+ x))
((y z) (values 0 0) (values z x)))

((> x 5) (list x y z))
(princ (list x y z)))

(1 0 0)(2 0 2)(3 2 3)(4 3 4)(5 4 5)
(6 5 6)

This kind of iteration is useful, for example, in interactive graphics programs,
which often have to deal with multiple quantities like coordinates and regions.

Suppose that we want to write a simple interactive game, in which the object
is to avoid being squashed between two pursuing objects. If the two pursuers both
hit you at the same time, you lose; if they crash into one another first, you win.
Figure 11.11 shows how the main loop of this game could be written using mvdo*.

It is also possible to write an mvdo, which binds its local variables in parallel:

> (mvdo ((x 1 (1+ x))
((y z) (values 0 0) (values z x)))
((> x 5) (list x y z))

(princ (list x y z)))
(1 0 0)(2 0 1)(3 1 2)(4 2 3)(5 3 4)
(6 4 5)

The need for psetq in defining do was described on page 96. To define mvdo,
we need a multiple-value version of psetq. Since Common Lisp doesn’t have◦
one, we have to write it ourselves, as in Figure 11.12. The new macro works as
follows:



11.5 ITERATION WITH MULTIPLE VALUES 159

(defmacro mvdo* (parm-cl test-cl &body body)
(mvdo-gen parm-cl parm-cl test-cl body))

(defun mvdo-gen (binds rebinds test body)
(if (null binds)

(let ((label (gensym)))
‘(prog nil

,label
(if ,(car test)

(return (progn ,@(cdr test))))
,@body
,@(mvdo-rebind-gen rebinds)
(go ,label)))

(let ((rec (mvdo-gen (cdr binds) rebinds test body)))
(let ((var/s (caar binds)) (expr (cadar binds)))
(if (atom var/s)

‘(let ((,var/s ,expr)) ,rec)
‘(multiple-value-bind ,var/s ,expr ,rec))))))

(defun mvdo-rebind-gen (rebinds)
(cond ((null rebinds) nil)

((< (length (car rebinds)) 3)
(mvdo-rebind-gen (cdr rebinds)))
(t
(cons (list (if (atom (caar rebinds))

’setq
’multiple-value-setq)

(caar rebinds)
(third (car rebinds)))

(mvdo-rebind-gen (cdr rebinds))))))

Figure 11.10: Multiple value binding version of do*.

> (let ((w 0) (x 1) (y 2) (z 3))
(mvpsetq (w x) (values ’a ’b) (y z) (values w x))
(list w x y z))

(A B 0 1)

The definition of mvpsetq relies on three utility functions: mklist (page 45),
group (page 47), and shuffle, defined here, which interleaves two lists:
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(mvdo* (((px py) (pos player) (move player mx my))
((x1 y1) (pos obj1) (move obj1 (- px x1)

(- py y1)))
((x2 y2) (pos obj2) (move obj2 (- px x2)

(- py y2)))
((mx my) (mouse-vector) (mouse-vector))
(win nil (touch obj1 obj2))
(lose nil (and (touch obj1 player)

(touch obj2 player))))
((or win lose) (if win ’win ’lose))

(clear)
(draw obj1)
(draw obj2)
(draw player))

(pos obj) returns two values x,y representing the position of obj. Initially,
the three objects have random positions.

(move obj dx dy) moves the object obj depending on its type and the vector
⟨dx,dy⟩. Returns two values x,y indicating the new position.

(mouse-vector) returns two values dx,dy indicating the current movement
of the mouse.

(touch obj1 obj2) returns true if obj1 and obj2 are touching.

(clear) clears the game region.

(draw obj) draws obj at its current position.

Figure 11.11: A game of squash.

> (shuffle ’(a b c) ’(1 2 3 4))
(A 1 B 2 C 3 4)

With mvpsetq, we can define mvdo as in Figure 11.13. Like condlet, this
macro uses mappend instead of mapcar to avoid modifying the original macro
call. The mappend-mklist idiom flattens a tree by one level:

> (mappend #’mklist ’((a b c) d (e (f g) h) ((i)) j))
(A B C D E (F G) H (I) J)
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(defmacro mvpsetq (&rest args)
(let* ((pairs (group args 2))

(syms (mapcar #’(lambda (p)
(mapcar #’(lambda (x) (gensym))

(mklist (car p))))
pairs)))

(labels ((rec (ps ss)
(if (null ps)

‘(setq
,@(mapcan #’(lambda (p s)

(shuffle (mklist (car p))
s))

pairs syms))
(let ((body (rec (cdr ps) (cdr ss))))
(let ((var/s (caar ps))

(expr (cadar ps)))
(if (consp var/s)

‘(multiple-value-bind ,(car ss)
,expr

,body)
‘(let ((,@(car ss) ,expr))

,body)))))))
(rec pairs syms))))

(defun shuffle (x y)
(cond ((null x) y)

((null y) x)
(t (list* (car x) (car y)

(shuffle (cdr x) (cdr y))))))

Figure 11.12: Multiple value version of psetq.

To help in understanding this rather large macro, Figure 11.14 contains a sample
expansion.

11.6 Need for Macros

Macros aren’t the only way to protect arguments against evaluation. Another is to
wrap them in closures. Conditional and repeated evaluation are similar because
neither problem inherently requiresmacros. For example,we could write a version
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(defmacro mvdo (binds (test &rest result) &body body)
(let ((label (gensym))

(temps (mapcar #’(lambda (b)
(if (listp (car b))

(mapcar #’(lambda (x)
(gensym))

(car b))
(gensym)))

binds)))
‘(let ,(mappend #’mklist temps)

(mvpsetq ,@(mapcan #’(lambda (b var)
(list var (cadr b)))

binds
temps))

(prog ,(mapcar #’(lambda (b var) (list b var))
(mappend #’mklist (mapcar #’car binds))
(mappend #’mklist temps))

,label
(if ,test

(return (progn ,@result)))
,@body
(mvpsetq ,@(mapcan #’(lambda (b)

(if (third b)
(list (car b)

(third b))))
binds))

(go ,label)))))

Figure 11.13: Multiple value binding version of do.

of if as a function:

(defun fnif (test then &optional else)
(if test

(funcall then)
(if else (funcall else))))

We would protect the then and else arguments by expressing them as closures,
so instead of

(if (rich) (go-sailing) (rob-bank))
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(mvdo ((x 1 (1+ x))
((y z) (values 0 0) (values z x)))

((> x 5) (list x y z))
(princ (list x y z)))

expands into:

(let (#:g2 #:g3 #:g4)
(mvpsetq #:g2 1

(#:g3 #:g4) (values 0 0))
(prog ((x #:g2) (y #:g3) (z #:g4))

#:g1
(if (> x 5)

(return (progn (list x y z))))
(princ (list x y z))
(mvpsetq x (1+ x)

(y z) (values z x))
(go #:g1)))

Figure 11.14: Expansion of a call to mvdo.

we would say

(fnif (rich)
#’(lambda () (go-sailing))
#’(lambda () (rob-bank)))

If all we want is conditional evaluation, macros aren’t absolutely necessary. They
just make programs cleaner. However, macros are necessary when we want to
take apart argument forms, or bind variables passed as arguments.

The same applies to macros for iteration. Althoughmacros offer the only way
to define an iteration construct which can be followed by a body of expressions,
it is possible to do iteration with functions, so long as the body of the loop is
packaged up in a function itself.1 The built-in function mapc, for example, is the
functional counterpart of dolist. The expression

(dolist (b bananas)
(peel b)
(eat b))
1It’s not impossible to write an iteration function which doesn’t need its argument wrapped up in

a function. We could write a function that called eval on expressions passed to it as arguments. For
an explanation of why it’s usually bad to call eval, see page 278.
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has the same side-effects as

(mapc #’(lambda (b)
(peel b)
(eat b))

bananas)

(though the former returns nil and the latter returns the list bananas). We could
likewise implement forever as a function,

(defun forever (fn)
(do ()

(nil)
(funcall fn)))

if we were willing to pass it a closure instead of a body of expressions.
However, iteration constructs usually want to do more than just iterate, as

forever does: they usually want to do a combination of binding and iteration.
With a function, the prospects for binding are limited. If youwant to bind variables
to successive elements of lists, you can use one of the mapping functions. But
if the requirements get much more complicated than that, you’ll have to write a
macro.
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Generalized Variables

Chapter 8 mentioned that one of the advantages of macros is their ability to
transform their arguments. One macro of this sort is setf. This chapter looks at
the implications of setf, and then shows some examples of macros which can be
built upon it.

Writing correct macros on setf is surprisingly difficult. To introduce the
topic, the first section will provide a simple example which is slightly incorrect.
The next section will explain what’s wrong with this macro, and show how to fix
it. The third and fourth sections present examples of utilities built on setf, and
the final section explains how to define your own setf inversions.

12.1 The Concept

The built-in macro setf is a generalization of setq. The first argument to setf
can be a call instead of just a variable:

> (setq lst ’(a b c))
(A B C)
> (setf (car lst) 480)
480
> lst
(480 B C)

In general (setf x y) can be understood as saying “see to it that x evaluates to
y.” As a macro, setf can look inside its arguments to see what needs to be done
to make such a statement true. If the first argument (after macroexpansion) is a

165
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symbol, the setf just expands into a setq. But if the first argument is a query,
the setf expands into the corresponding assertion. Since the second argument is
a constant, the preceding example could expand into:

(progn (rplaca lst 480) 480)

This transformation from query to assertion is called inversion. All the most
frequently used Common Lisp access functions have predefined inversions, in-
cluding car, cdr, nth, aref, get, gethash, and the access functions created by
defstruct. (The full list is in CLTL2, p. 125.)

An expression which can serve as the first argument to setf is called a
generalized variable. Generalized variables have turned out to be a powerful
abstraction. A macro call resembles a generalized variable in that any macro call
which expands into an invertible reference will itself be invertible.

When we also write our own macros on top of setf, the combination leads to
noticeably cleaner programs. One of the macros we can define on top of setf is
toggle,1

(defmacro toggle (obj) ; wrong
‘(setf ,obj (not ,obj)))

which toggles the value of a generalized variable:

> (let ((lst ’(a b c)))
(toggle (car lst))
lst)

(NIL B C)

Now consider the following sample application. Suppose someone—a soap-
opera writer, energetic busybody, or party official—wants to maintain a database
of all the relations between the inhabitants of a small town. Among the tables
required is one which records people’s friends:

(defvar *friends* (make-hash-table))

The entries in this hash-table are themselves hash-tables, in which names of
potential friends are mapped to t or nil:

(setf (gethash ’mary *friends*) (make-hash-table))

To make John the friend of Mary, we would say:

(setf (gethash ’john (gethash ’mary *friends*)) t)

1This definition is not correct, as the following section will explain.
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The town is divided between two factions. As factions are wont to do, each
says “anyone who is not with us is against us,” so everyone in town has been
compelled to join one side or the other. Thus when someone switches sides, all
his friends become enemies and all his enemies become friends.

To toggle whether x is the friend of y using only built-in operators, we have
to say:

(setf (gethash x (gethash y *friends*))
(not (gethash x (gethash y *friends*))))

which is a rather complicated expression, though much simpler than it would
have been without setf. If we had defined an access macro upon the database as
follows:

(defmacro friend-of (p q)
‘(gethash ,p (gethash ,q *friends*)))

then between this macro and toggle, we would have been better equipped to deal
with changes to the database. The previous update could have been expressed as
simply:

(toggle (friend-of x y))

Generalized variables are like a health food that tastes good. They yield
programs which are virtuously modular, and yet beautifully elegant. If you
provide access to your data structures through macros or invertible functions,
other modules can use setf to modify your data structures without having to
know the details of their representation.

12.2 The Multiple Evaluation Problem

The previous section warned that our initial definition of toggle was incorrect:

(defmacro toggle (obj) ; wrong
‘(setf ,obj (not ,obj)))

It is subject to the problemdescribed in Section 10.1, multiple evaluation. Trouble
arises when its argument has side-effects. For example, if lst is a list of objects,
and we write:

(toggle (nth (incf i) lst))

then we would expect to be toggling the (i+1)th element. However, with the
current definition of toggle this call will expand into:
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(setf (nth (incf i) lst)
(not (nth (incf i) lst)))

This increments i twice, and sets the (i+1)th element to the opposite of the
(i+2)th element. So in this example

> (let ((lst ’(t nil t))
(i -1))

(toggle (nth (incf i) lst))
lst)

(T NIL T)

the call to toggle seems to have no effect.
It is not enough just to take the expression given as an argument to toggle

and insert it as the first argument to setf. We have to look inside the expression to
see what it does: if it contains subforms, we have to break them apart and evaluate
them separately, in case they have side effects. In general, this is a complicated
business.

Tomake it easier, CommonLisp provides amacrowhich automatically defines
a limited class of macros on setf. This macro is called define-modify-macro,
and it takes three arguments: the name of the macro, its additional parameters
(after the generalized variable), and the name of the function2 which yields the
new value for the generalized variable.

Using define-modify-macro, we could define toggle as follows:

(define-modify-macro toggle () not)

Paraphrased, this says “to evaluate an expression of the form (toggle place),
find the location specified by place, and if the value stored there is val, replace it
with the value of (not val).” Here is the new macro used in the same example:

> (let ((lst ’(t nil t))
(i -1))

(toggle (nth (incf i) lst))
lst)

(NIL NIL T)

This version gives the correct result, but it could be made more general. Since
setf and setq can take an arbitrary number of arguments, so should toggle.
We can add this capability by defining another macro on top of the modify-macro,
as in Figure 12.1.

2A function name in the general sense: either 1+ or (lambda (x) (+ x 1)).
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(defmacro allf (val &rest args)
(with-gensyms (gval)
‘(let ((,gval ,val))

(setf ,@(mapcan #’(lambda (a) (list a gval))
args)))))

(defmacro nilf (&rest args) ‘(allf nil ,@args))

(defmacro tf (&rest args) ‘(allf t ,@args))

(defmacro toggle (&rest args)
‘(progn

,@(mapcar #’(lambda (a) ‘(toggle2 ,a))
args)))

(define-modify-macro toggle2 () not)

Figure 12.1: Macros which operate on generalized variables.

12.3 New Utilities

This section gives some examples of new utilities which operate on generalized
variables. They must be macros in order to pass their arguments intact to setf.

Figure 12.1 shows four new macros built upon setf. The first, allf, is for
setting a number of generalized variables to the same value. Upon it are built
nilf and tf, which set their arguments to nil and t, respectively. These macros
are simple, but they make a difference.

Like setq, setf can take multiple arguments—alternating variables and val-
ues:

(setf x 1 y 2)

So can these new utilities, but you can skip giving half the arguments. If you want
to initialize a number of variables to nil, instead of

(setf x nil y nil z nil)

you can say just

(nilf x y z)
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(define-modify-macro concf (obj) nconc)

(define-modify-macro conc1f (obj)
(lambda (place obj)
(nconc place (list obj))))

(define-modify-macro concnew (obj &rest args)
(lambda (place obj &rest args)
(unless (apply #’member obj place args)
(nconc place (list obj)))))

Figure 12.2: List operations on generalized variables.

The last macro, toggle, was described in the previous section: it is like nilf,
but gives each of its arguments the opposite truth value.

These fourmacros illustrate an important point about operators for assignment.
Even if we only intend to use an operator on ordinary variables, it’s worth writing
it to expand into a setf instead of a setq. If the first argument is a symbol, the
setf will expand into a setq anyway. Since we can have the generality of setf
at no extra cost, it is rarely desirable to use setq in a macroexpansion.

Figure 12.2 contains threemacros for destructivelymodifying the ends of lists.
Section 3.1 mentioned that it is unsafe to rely on

(nconc x y)

for side-effects, and that one must write instead

(setq x (nconc x y))

This idiom is embodied in concf. The more specialized conc1f and concnew
are like push and pushnew for the other end of the list: conc1f adds one element
to the end of a list, and concnew does the same, but only if the element is not
already a member.

Section 2.2 mentioned that the name of a function can be a lambda-expression
as well as a symbol. Thus it is fine to give a whole lambda-expression as the
third argument to define-modify-macro, as in the definition of conc1f. Using
conc1 from page 45, this macro could also have been written:

(define-modify-macro conc1f (obj) conc1)

The macros in Figure 12.2 should be used with one reservation. If you’re
planning to build a list by adding elements to the end, it may be preferable to use
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push, and then nreverse the list. It is cheaper to do something to the front of a
list than to the end, because to do something to the end you have to get there first.
It is probably to encourage efficient programming that Common Lisp has many
operators for the former and few for the latter.

12.4 More Complex Utilities

Not all macros on setf can be defined with define-modify-macro. Suppose,
for example, that wewant to define amacro f for applying a function destructively
to a generalized variable. The built-in macro incf is an abbreviation for setf of
+. Instead of

(setf x (+ x y))

we say just

(incf x y)

The new f is to be a generalization of this idea: while incf expands into a call
to +, f will expand into a call to the operator given as the first argument. For
example, in the definition of scale-objs on page 115, we had to write

(setf (obj-dx o) (* (obj-dx o) factor))

With f this will become

(_f * (obj-dx o) factor)

The incorrect way to write f would be:

(defmacro _f (op place &rest args) ; wrong
‘(setf ,place (,op ,place ,@args)))

Unfortunately,we can’t define a correct fwith define-modify-macro, because
the operator to be applied to the generalized variable is given as an argument.

More complex macros like this one have to be written by hand. To make such
macros easier to write, Common Lisp provides the function get-setf-method,
which takes a generalized variable and returns all the information necessary to
retrieve or set its value. Wewill see how to use this information by hand-generating
an expansion for:

(incf (aref a (incf i)))

When we call get-setf-method on the generalized variable, we get five
values intended for use as ingredients in the macroexpansion:
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> (get-setf-method ’(aref a (incf i)))
(#:G4 #:G5)
(A (INCF I))
(#:G6)
(SYSTEM:SET-AREF #:G6 #:G4 #:G5)
(AREF #:G4 #:G5)

The first two values are lists of temporary variables and the values that should be
assigned to them. So we can begin the expansion with:

(let* ((#:g4 a)
(#:g5 (incf i)))

...)

These bindings should be created in a let* because in the general case the value
forms can refer to earlier variables. The third3 and fifth values are another tem-
porary variable and the form that will return the original value of the generalized
variable. Since we want to add 1 to this value, we wrap the latter in a call to 1+:

(let* ((#:g4 a)
(#:g5 (incf i))
(#:g6 (1+ (aref #:g4 #:g5))))

...)

Finally, the fourth value returned by get-setf-method is the assignment that
must be made within the scope of the new bindings:

(let* ((#:g4 a)
(#:g5 (incf i))
(#:g6 (1+ (aref #:g4 #:g5))))

(system:set-aref #:g6 #:g4 #:g5))

More often than not, this form will refer to internal functions which are not part
of Common Lisp. Usually setf masks the presence of these functions, but they
have to exist somewhere. Everything about them is implementation-dependent,
so portable code should use forms returned by get-setf-method, rather than
referring directly to functions like system:set-aref.

Now to implement fwewrite a macrowhich does almost exactly what we did
when expanding incf by hand. The only difference is that, instead of wrapping
the last form in the let* in a call to 1+, we wrap it in an expression made from
the arguments to f. The definition of f is shown in Figure 12.3.

3The third value is currently always a list of one element. It is returned as a list to provide the (so
far unconsummated) potential to store multiple values in generalized variables.
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(defmacro _f (op place &rest args)
(multiple-value-bind (vars forms var set access)

(get-setf-method place)
‘(let* (,@(mapcar #’list vars forms)

(,(car var) (,op ,access ,@args)))
,set)))

(defmacro pull (obj place &rest args)
(multiple-value-bind (vars forms var set access)

(get-setf-method place)
(let ((g (gensym)))
‘(let* ((,g ,obj)

,@(mapcar #’list vars forms)
(,(car var) (delete ,g ,access ,@args)))

,set))))

(defmacro pull-if (test place &rest args)
(multiple-value-bind (vars forms var set access)

(get-setf-method place)
(let ((g (gensym)))
‘(let* ((,g ,test)

,@(mapcar #’list vars forms)
(,(car var) (delete-if ,g ,access ,@args)))

,set))))

(defmacro popn (n place)
(multiple-value-bind (vars forms var set access)

(get-setf-method place)
(with-gensyms (gn glst)
‘(let* ((,gn ,n)

,@(mapcar #’list vars forms)
(,glst ,access)
(,(car var) (nthcdr ,gn ,glst)))

(prog1 (subseq ,glst 0 ,gn)
,set)))))

Figure 12.3: More complex macros on setf.
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This utility is quite a useful one. Now that we have it, for example, we can
easily replace any named function with a memoized (Section 5.3) equivalent.4 To
memoize foo we would say:

(_f memoize (symbol-function ’foo))

Having f also makes it easy to define other macros on setf. For example,
we could now define conc1f (Figure 12.2) as:

(defmacro conc1f (lst obj)
‘(_f nconc ,lst (list ,obj)))

Figure 12.3 contains some other useful macros on setf. The next, pull,
is intended as a complement to the built-in pushnew. The pair are like more
discerning versions of push and pop; pushnew pushes a new element onto a list
if it is not already a member, and pull destructively removes selected elements
from a list. The &rest parameter in pull’s definition makes pull able to accept
all the same keyword parameters as delete:

> (setq x ’(1 2 (a b) 3))
(1 2 (A B) 3)
> (pull 2 x)
(1 (A B) 3)
> (pull ’(a b) x :test #’equal)
(1 3)
> x
(1 3)

You could almost think of this macro as if it were defined:

(defmacro pull (obj seq &rest args) ; wrong
‘(setf ,seq (delete ,obj ,seq ,@args)))

though if it really were defined that way, it would be subject to problemswith both
order and number of evaluations. We could define a version of pull as a simple
modify-macro:

(define-modify-macro pull (obj &rest args)
(lambda (seq obj &rest args)
(apply #’delete obj seq args)))

4Built-in functions should not be memoized in this way, though. Common Lisp forbids the
redefinition of built-in functions.
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but since modify-macrosmust take the generalized variable as their first argument,
we would have to give the first two arguments in reverse order, which would be
less intuitive.

The more general pull-if takes an initial function argument, and expands
into a delete-if instead of a delete:

> (let ((lst ’(1 2 3 4 5 6)))
(pull-if #’oddp lst)
lst)

(2 4 6)

These twomacros illustrate another general point. If the underlying function takes
optional arguments, so should the macro built upon it. Both pull and pull-if
pass optional arguments on to their deletes.

The final macro in Figure 12.3, popn, is a generalization of pop. Instead of
popping just one element of a list, it pops and returns a subsequence of arbitrary
length:

> (setq x ’(a b c d e f))
(A B C D E F)
> (popn 3 x)
(A B C)
> x
(D E F)

Figure 12.4 contains amacrowhich sorts its arguments. If x and y are variables
and we want to ensure that x does not have the lower of the two values, we can
write:

(if (> y x) (rotatef x y))

But if we want to do this for three or more variables, the code required grows
rapidly. Instead of writing it by hand, we can have sortf write it for us. This
macro takes a comparison operator plus any number of generalized variables, and
swaps their values until they are in the order dictated by the operator. In the
simplest case, the arguments could be ordinary variables:

> (setq x 1 y 2 z 3)
3
> (sortf > x y z)
3
> (list x y z)
(3 2 1)
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(defmacro sortf (op &rest places)
(let* ((meths (mapcar #’(lambda (p)

(multiple-value-list
(get-setf-method p)))

places))
(temps (apply #’append (mapcar #’third meths))))

‘(let* ,(mapcar #’list
(mapcan #’(lambda (m)

(append (first m)
(third m)))

meths)
(mapcan #’(lambda (m)

(append (second m)
(list (fifth m))))

meths))
,@(mapcon #’(lambda (rest)

(mapcar
#’(lambda (arg)

‘(unless (,op ,(car rest) ,arg)
(rotatef ,(car rest) ,arg)))

(cdr rest)))
temps)

,@(mapcar #’fourth meths))))

Figure 12.4: A macro which sorts its arguments.

In general, they could be any invertible expressions. Suppose cake is an invertible
function which returns someone’s piece of cake, and bigger is a comparison
function defined on pieces of cake. If we want to enforce the rule that the cake
of moe is no less than the cake of larry, which is no less than that of curly, we
write:

(sortf bigger (cake ’moe) (cake ’larry) (cake ’curly))

The definition of sortf is similar in outline to that of f. It begins with a
let* in which the temporary variables returned by get-setf-method are bound
to the initial values of the generalized variables. The core of sortf is the central
mapcon expression, which generates code to sort these temporary variables. The
code generated by this portion of the macro grows exponentially with the number
of arguments. After sorting, the generalized variables are reassigned using the
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(sortf > x (aref ar (incf i)) (car lst))

expands (in one possible implementation) into:

(let* ((#:g1 x)
(#:g4 ar)
(#:g3 (incf i))
(#:g2 (aref #:g4 #:g3))
(#:g6 lst)
(#:g5 (car #:g6)))

(unless (> #:g1 #:g2)
(rotatef #:g1 #:g2))

(unless (> #:g1 #:g5)
(rotatef #:g1 #:g5))

(unless (> #:g2 #:g5)
(rotatef #:g2 #:g5))

(setq x #:g1)
(system:set-aref #:g2 #:g4 #:g3)
(system:set-car #:g6 #:g5))

Figure 12.5: Expansion of a call to sortf.

forms returned by get-setf-method. The algorithm used is the O(n2) bubble-
sort, but this macro is not intended to be called with huge numbers of arguments.

Figure 12.5 shows the expansion of a call to sortf. In the initial let*, the
arguments and their subforms are carefully evaluated in left-to-right order. Then
appear three expressions which compare and possibly swap the values of the
temporary variables: the first is compared to the second, then the first to the third,
then the second to the third. Finally the the generalized variables are reassigned
left-to-right. Although the issue rarely arises, macro arguments should usually be
assigned left-to-right, as well as being evaluated in this order.

Operators like f and sortf bear a certain resemblance to functions that
take functional arguments. It should be understood that they are something quite
different. A function like find-if takes a function and calls it; a macro like f
takes a name, and makes it the car of an expression. Both f and sortf could
have been written to take functional arguments. For example, f could have been
written:
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(defmacro _f (op place &rest args)
(let ((g (gensym)))
(multiple-value-bind (vars forms var set access)

(get-setf-method place)
‘(let* ((,g ,op)

,@(mapcar #’list vars forms)
(,(car var) (funcall ,g ,access ,@args)))

,set))))

and called ( f #’+ x 1). But the original version of f can do anything this one
could, and since it deals in names, it can also take the name of a macro or special
form. As well as +, you could call, for example, nif (page 150):

> (let ((x 2))
(_f nif x ’p ’z ’n)
x)

P

12.5 Defining Inversions

Section 12.1 explained that any macro call which expands into an invertible
reference will itself be invertible. You don’t have to define operators as macros
just to make them invertible, though. By using defsetf you can tell Lisp how to
invert any function or macro call.

This macro can be used in two ways. In the simplest case, its arguments are
two symbols:

(defsetf symbol-value set)

In the more complicated form, a call to defsetf is like a call to defmacro, with
an additional parameter for the updated value form. For example, this would
define a possible inversion for car:

(defsetf car (lst) (new-car)
‘(progn (rplaca ,lst ,new-car)

,new-car))

There is one important difference between defmacro and defsetf: the latter
automatically creates gensyms for its arguments. With the definition given above,
(setf (car x) y) would expand into:

(let* ((#:g2 x)
(#:g1 y))

(progn (rplaca #:g2 #:g1)
#:g1))
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(defvar *cache* (make-hash-table))

(defun retrieve (key)
(multiple-value-bind (x y) (gethash key *cache*)
(if y

(values x y)
(cdr (assoc key *world*)))))

(defsetf retrieve (key) (val)
‘(setf (gethash ,key *cache*) ,val))

Figure 12.6: An asymmetric inversion.

Thus we can write defsetf expanders without having to worry about variable
capture, or number or order of evaluations.

In CLTL2 Common Lisp, it is possible to define setf inversions directly with
defun, so the previous example could also be written:

(defun (setf car) (new-car lst)
(rplaca lst new-car)
new-car)

The updated value should be the first parameter in such a function. It is also
conventional to return this value as the value of the function.

The examples so far have suggested that generalized variables are supposed
to refer to a place in a data structure. The villain carries his hostage down to
the dungeon, and the rescuing hero carries her back up again; they both follow
the same path, but in different directions. It’s not surprising if people have the
impression that setf must work this way, because all the predefined inversions
seem to be of this form; indeed, place is the conventional name for a parameter
which is to be inverted.

In principle, setf is more general: an access form and its inversion need not
even operate on the same data structure. Suppose that in some application we
want to cache database updates. This could be necessary, for example, if it were
not efficient to do real updates on the fly, or if all the updates had to be verified
for consistency before committing to them.

Suppose that *world* is the actual database. For simplicity, we will make it
an assoc-list whose elements are of the form (key . val). Figure 12.6 shows a
lookup function called retrieve. If *world* is

((a . 2) (b . 16) (c . 50) (d . 20) (f . 12))
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then

> (retrieve ’c)
50

Unlike a call to car, a call to retrieve does not refer to a specific place in a data
structure. The return value could come from one of two places. And the inversion
of retrieve, also defined in Figure 12.6, only refers to one of them:

> (setf (retrieve ’n) 77)
77
> (retrieve ’n)
77
T

This lookup returns a second value of t, indicating that the answer was found in
the cache.

Likemacros themselves, generalized variables are an abstraction of remarkable
power. There is probably more to be discovered here. Certainly individual users
are likely to discover ways in which the use of generalized variables could lead
to more elegant or more powerful programs. But it may also be possible to
use setf inversion in new ways, or to discover other classes of similarly useful
transformations.◦
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Computation at Compile-Time

The preceding chapters described several types of operators which have to be
implemented by macros. This one describes a class of problems which could
be solved by functions, but where macros are more efficient. Section 8.2 listed
the pros and cons of using macros in a given situation. Among the pros was
“computation at compile-time.” By defining an operator as a macro, you can
sometimes make it do some of its work when it is expanded. This chapter looks
at macros which take advantage of this possibility.

13.1 New Utilities

Section 8.2 raised the possibility of using macros to shift computation to compile-
time. There we had as an example the macro avg, which returns the average of
its arguments:

> (avg pi 4 5)
4.047...

Figure 13.1 shows avg defined first as a function and then as a macro. When avg
is defined as a macro, the call to length can be made at compile-time. In the
macro version we also avoid the expense of manipulating the &rest parameter at
runtime. In many implementations, avg will be faster written as a macro.

The kind of savings which comes from knowing the number of arguments at
expansion-time can be combined with the kind we get from in (page 152), where
it was possible to avoid even evaluating some of the arguments. Figure 13.2
contains two versions of most-of, which returns true if most of its arguments do:
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(defun avg (&rest args)
(/ (apply #’+ args) (length args)))

(defmacro avg (&rest args)
‘(/ (+ ,@args) ,(length args)))

Figure 13.1: Shifting computation when finding averages.

(defun most-of (&rest args)
(let ((all 0)

(hits 0))
(dolist (a args)
(incf all)
(if a (incf hits)))

(> hits (/ all 2))))

(defmacro most-of (&rest args)
(let ((need (floor (/ (length args) 2)))

(hits (gensym)))
‘(let ((,hits 0))

(or ,@(mapcar #’(lambda (a)
‘(and ,a (> (incf ,hits) ,need)))

args)))))

Figure 13.2: Shifting and avoiding computation.

> (most-of t t t nil)
T

The macro version expands into code which, like in, only evaluates as many of
the arguments as it needs to. For example, (most-of (a) (b) (c)) expands
into the equivalent of:

(let ((count 0))
(or (and (a) (> (incf count) 1))

(and (b) (> (incf count) 1))
(and (c) (> (incf count) 1))))

In the best case, just over half the arguments will be evaluated.
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(defun nthmost (n lst)
(nth n (sort (copy-list lst) #’>)))

(defmacro nthmost (n lst)
(if (and (integerp n) (< n 20))

(with-gensyms (glst gi)
(let ((syms (map0-n #’(lambda (x) (gensym)) n)))
‘(let ((,glst ,lst))

(unless (< (length ,glst) ,(1+ n))
,@(gen-start glst syms)
(dolist (,gi ,glst)
,(nthmost-gen gi syms t))

,(car (last syms))))))
‘(nth ,n (sort (copy-list ,lst) #’>))))

(defun gen-start (glst syms)
(reverse
(maplist #’(lambda (syms)

(let ((var (gensym)))
‘(let ((,var (pop ,glst)))

,(nthmost-gen var (reverse syms)))))
(reverse syms))))

(defun nthmost-gen (var vars &optional long?)
(if (null vars)

nil
(let ((else (nthmost-gen var (cdr vars) long?)))

(if (and (not long?) (null else))
‘(setq ,(car vars) ,var)
‘(if (> ,var ,(car vars))

(setq ,@(mapcan #’list
(reverse vars)
(cdr (reverse vars)))

,(car vars) ,var)
,else)))))

Figure 13.3: Use of arguments known at compile-time.
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A macro may also be able to shift computation to compile-time if the values
of particular arguments are known. Figure 13.3 contains an example of such a
macro. The function nthmost takes a number n and a list of numbers, and returns
the nth largest among them; like other sequence functions, it is zero-indexed:

> (nthmost 2 ’(2 6 1 5 3 4))
4

The function version is written very simply. It sorts the list and calls nth on
the result. Since sort is destructive, nthmost copies the list before sorting it.
Written thus, nthmost is inefficient is two respects: it conses, and it sorts the
entire list of arguments, though all we care about are the top n.

If we know n at compile-time, we can approach the problem differently. The
rest of the code in Figure 13.3 defines a macro version of nthmost. The first
thing this macro does is look at its first argument. If the first argument is not a
literal number, it expands into the same code we saw above. If the first argument
is a number, we can follow a different course. If you wanted to find, say, the third
biggest cookie on a plate, you could do it by looking at each cookie in turn, always
keeping in your hand the three biggest found so far. When you have looked at all
the cookies, the smallest cookie in your hand is the one you are looking for. If n
is a small constant, not proportional to the number of cookies, then this technique
gets you a given cookie with less effort that it would take to sort all of them first.

This is the strategy followed when n is known at expansion-time. In its
expansion, the macro creates n variables, then calls nthmost-gen to generate the
code which has to be evaluated upon looking at each cookie. Figure 13.4 shows
a sample macroexpansion. The macro nthmost behaves just like the original
function, except that it can’t be passed as an argument to apply. The justification
for using a macro is purely one of efficiency: the macro version does not cons at
runtime, and if n is a small constant, performs fewer comparisons.

To have efficient programs, must one then take the trouble to write such huge
macros? In this case, probably not. The two versions of nthmost are intended as
an example of a general principle: when some arguments are known at compile-
time, you can use a macro to generate more efficient code. Whether or not you
take advantage of this possibility will depend on how much you stand to gain,
and how much more effort it will take to write an efficient macro version. Since
the macro version of nthmost is long and complicated, it would only be worth
writing in extreme cases. However, information known at compile-time is always
a factor worth considering, even if you choose not to take advantage of it.
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(nthmost 2 nums)

expands into:

(let ((#:g7 nums))
(unless (< (length #:g7) 3)
(let ((#:g6 (pop #:g7)))
(setq #:g1 #:g6))

(let ((#:g5 (pop #:g7)))
(if (> #:g5 #:g1)

(setq #:g2 #:g1 #:g1 #:g5)
(setq #:g2 #:g5)))

(let ((#:g4 (pop #:g7)))
(if (> #:g4 #:g1)

(setq #:g3 #:g2 #:g2 #:g1 #:g1 #:g4)
(if (> #:g4 #:g2)

(setq #:g3 #:g2 #:g2 #:g4)
(setq #:g3 #:g4))))

(dolist (#:g8 #:g7)
(if (> #:g8 #:g1)

(setq #:g3 #:g2 #:g2 #:g1 #:g1 #:g8)
(if (> #:g8 #:g2)

(setq #:g3 #:g2 #:g2 #:g8)
(if (> #:g8 #:g3)

(setq #:g3 #:g8)
nil))))

#:g3))

Figure 13.4: Expansion of nthmost.

13.2 Example: Bezier Curves

Like the with-macro (Section 11.2), the macro for computation at compile-time
is more likely to be written for a specific application than as a general-purpose
utility. How much can a general-purpose utility know at compile-time? The
number of arguments it has been given, and perhaps some of their values. If
we want to use other constraints, they will probably have to be ones imposed by
individual programs.

As an example, this section shows how macros can speed up the generation
of Bezier curves. Curves must be generated fast if they are being manipulated
interactively. It turns out that if the number of segments in the curve is known
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beforehand, most of the computation can be done at compile-time. By writing our
curve-generator as a macro, we can weave precomputed values right into code.
This should be even faster than the more usual optimization of storing them in an
array.

A Bezier curve is defined in terms of four points—two endpoints and two
control points. When we are working in two dimensions, these points define
parametric equations for the x and y coordinates of points on the curve. If the
two endpoints are (x0, y0) and (x3, y3) and the two control points are (x1, y1) and
(x2, y2), then the equations defining points on the curve are:

x = (x3 − 3x2 + 3x1 − x0)u
3 + (3x2 − 6x1 + 3x0)u2 + (3x1 − 3x0)u + x0

y = (y3 − 3y2 + 3y1 − y0)u
3 + (3y2 − 6y1 + 3y0)u2 + (3y1 − 3y0)u + y0

If we evaluate these equations for n values of u between 0 and 1, we get n points
on the curve. For example, if we want to draw the curve as 20 segments, then we
would evaluate the equations for u = .05, .1,. . ., .95. There is no need to evaluate
them for u of 0 or 1, because if u = 0 they will yield the first endpoint (x0, y0), and
if u = 1 they will yield the second endpoint (x3, y3).

An obvious optimization is to make n fixed, calculate the powers of u before-
hand, and store them in an (n−1) × 3 array. By defining the curve-generator as
a macro, we can do even better. If n is known at expansion-time, the program
could simply expand into n line-drawing commands. The precomputed powers of
u, instead of being stored in an array, could be inserted as literal values right into
the macro expansion.

Figure 13.5 contains a curve-generatingmacrowhich implements this strategy.
Instead of drawing lines immediately, it dumps the generated points into an array.
When a curve is moving interactively, each instance has to be drawn twice: once
to show it, and again to erase it before drawing the next. In the meantime, the
points have to be saved somewhere.

With n = 20, genbez expands into 21 setfs. Since the powers of u appear
directly in the code, we save the cost of looking them up at runtime, and the cost
of computing them at startup. Like the powers of u, the array indices appear as
constants in the expansion, so the bounds-checking for the (setf aref)s could
also be done at compile-time.

13.3 Applications

Later chapters contain several other macros which use information available at
compile-time. A good example is if-match (page 242). Pattern-matchers com-
pare two sequences, possibly containing variables, to see if there is some way of
assigning values to the variables which will make the two sequences equal. The
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(defconstant *segs* 20)
(defconstant *du* (/ 1.0 *segs*))
(defconstant *pts* (make-array (list (1+ *segs*) 2)))

(defmacro genbez (x0 y0 x1 y1 x2 y2 x3 y3)
(with-gensyms (gx0 gx1 gy0 gy1 gx3 gy3)
‘(let ((,gx0 ,x0) (,gy0 ,y0)

(,gx1 ,x1) (,gy1 ,y1)
(,gx3 ,x3) (,gy3 ,y3))

(let ((cx (* (- ,gx1 ,gx0) 3))
(cy (* (- ,gy1 ,gy0) 3))
(px (* (- ,x2 ,gx1) 3))
(py (* (- ,y2 ,gy1) 3)))

(let ((bx (- px cx))
(by (- py cy))
(ax (- ,gx3 px ,gx0))
(ay (- ,gy3 py ,gy0)))

(setf (aref *pts* 0 0) ,gx0
(aref *pts* 0 1) ,gy0)

,@(map1-n #’(lambda (n)
(let* ((u (* n *du*))

(u^2 (* u u))
(u^3 (expt u 3)))

‘(setf (aref *pts* ,n 0)
(+ (* ax ,u^3)

(* bx ,u^2)
(* cx ,u)
,gx0)

(aref *pts* ,n 1)
(+ (* ay ,u^3)

(* by ,u^2)
(* cy ,u)
,gy0))))

(1- *segs*))
(setf (aref *pts* *segs* 0) ,gx3

(aref *pts* *segs* 1) ,gy3))))))

Figure 13.5: Macro for generating Bezier curves.
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design of if-match shows that if one of the sequences is known at compile-time,
and only that one contains variables, then matching can be done more efficiently.
Instead of comparing the two sequences at runtime and consing up lists to hold
the variable bindings established in the process, we can have a macro generate
code to perform the exact comparisons dictated by the known sequence, and can
store the bindings in real Lisp variables.

The embedded languages described in Chapters 19–24 also, for the most part,
take advantage of information available at compile-time. Since an embedded
language is a compiler of sorts, it’s only natural that it should use such information.
As a general rule, the more elaborate the macro, the more constraints it imposes
on its arguments, and the better your chances of using these constraints to generate
efficient code.
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Anaphoric Macros

Chapter 9 treated variable capture exclusively as a problem—as something which
happens inadvertently, and which can only affect programs for the worse. This
chapter will show that variable capture can also be used constructively. There are
some useful macros which couldn’t be written without it.

It’s not uncommon in a Lisp program to want to test whether an expression
returns a non-nil value, and if so, to do something with the value. If the expression
is costly to evaluate, then one must normally do something like this:

(let ((result (big-long-calculation)))
(if result

(foo result)))

Wouldn’t it be easier if we could just say, as we would in English:

(if (big-long-calculation)
(foo it))

By taking advantage of variable capture, we can write a version of ifwhich works
just this way.

14.1 Anaphoric Variants

In natural language, an anaphor is an expression which refers back in the con-
versation. The most common anaphor in English is probably “it,” as in “Get the
wrench and put it on the table.” Anaphora are a great convenience in everyday
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language—imagine trying to get alongwithout them—but they don’t appearmuch
in programming languages. For themost part, this is good. Anaphoric expressions
are often genuinely ambiguous, and present-day programming languages are not
designed to handle ambiguity.

However, it is possible to introduce a very limited form of anaphora into
Lisp programs without causing ambiguity. An anaphor, it turns out, is a lot like
a captured symbol. We can use anaphora in programs by designating certain
symbols to serve as pronouns, and then writing macros intentionally to capture
these symbols.

In the new version of if, the symbol it is the one we want to capture. The
anaphoric if, called aif for short, is defined as follows:

(defmacro aif (test-form then-form &optional else-form)
‘(let ((it ,test-form))

(if it ,then-form ,else-form)))

and used as in the previous example:

(aif (big-long-calculation)
(foo it))

When you use an aif, the symbol it is left bound to the result returned by the
test clause. In the macro call, it seems to be free, but in fact the expression (foo
it) will be inserted by expansion of the aif into a context in which the symbol
it is bound:

(let ((it (big-long-calculation)))
(if it (foo it) nil))

So a symbol which looks free in the source code is left bound by the macroex-
pansion. All the anaphoric macros in this chapter use some variation of the same
technique.

Figure 14.1 contains anaphoric variants of several Common Lisp operators.
After aif comes awhen, the obvious anaphoric variant of when:

(awhen (big-long-calculation)
(foo it)
(bar it))

Both aif and awhen are frequently useful, but awhile is probably unique
among the anaphoric macros in being more often needed than its regular cousin,
while (defined on page 91). Macros like while and awhile are typically used
in situations where a program needs to poll some outside source. And when you
are polling a source, unless you are simply waiting for it to change state, you will
usually want to do something with the object you find there:
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(defmacro aif (test-form then-form &optional else-form)
‘(let ((it ,test-form))

(if it ,then-form ,else-form)))

(defmacro awhen (test-form &body body)
‘(aif ,test-form

(progn ,@body)))

(defmacro awhile (expr &body body)
‘(do ((it ,expr ,expr))

((not it))
,@body))

(defmacro aand (&rest args)
(cond ((null args) t)

((null (cdr args)) (car args))
(t ‘(aif ,(car args) (aand ,@(cdr args))))))

(defmacro acond (&rest clauses)
(if (null clauses)

nil
(let ((cl1 (car clauses))

(sym (gensym)))
‘(let ((,sym ,(car cl1)))

(if ,sym
(let ((it ,sym)) ,@(cdr cl1))
(acond ,@(cdr clauses)))))))

Figure 14.1: Anaphoric variants of Common Lisp operators.

(awhile (poll *fridge*)
(eat it))

The definition of aand is a bit more complicated than the preceding ones.
It provides an anaphoric version of and; during the evaluation of each of its
arguments, it will be bound to the value returned by the previous argument.1 In
practice, aand tends to be used in programs which make conditional queries, as
in:

1Although one tends to think of and and or together, there would be no point in writing an
anaphoric version of or. An argument in an or expression is evaluated only if the previous argument
evaluated to nil, so there would be nothing useful for an anaphor to refer to in an aor.
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(aand (owner x) (address it) (town it))

which returns the town (if there is one) of the address (if there is one) of the owner
(if there is one) of x. Without aand, this expression would have to be written

(let ((own (owner x)))
(if own

(let ((adr (address own)))
(if adr (town adr)))))

The definition of aand shows that the expansion will vary depending on the
number of arguments in the macro call. If there are no arguments, then aand, like
the regular and, should simply return t. Otherwise the expansion is generated
recursively, each step yielding one layer in a chain of nested aifs:

(aif ⟨first argument⟩
⟨expansion for rest of arguments⟩)

The expansion of an aandmust terminate when there is one argument left, instead
of working its way down to nil like most recursive functions. If the recursion
continued until no conjuncts remained, the expansion would always be of the
form:

(aif ⟨c1⟩
...
(aif ⟨cn⟩

t). . .)

Such an expressionwould always return t or nil, and the example abovewouldn’t
work as intended.

Section 10.4 warned that if a macro always yielded an expansion containing
a call to itself, the expansion would never terminate. Though recursive, aand is
safe because in the base case its expansion doesn’t refer to aand.

The last example, acond, is meant for those cases where the remainder of a
cond clause wants to use the value returned by the test expression. (This situation
arises so often that some Scheme implementations provide a way to use the value
returned by the test expression in a cond clause.)

In the expansion of an acond clause, the result of the test expression will
initially be kept in a gensymed variable, in order that the symbol itmay be bound
onlywithin the remainder of the clause. Whenmacros create bindings, they should
always do so over the narrowest possible scope. Here, if we dispensed with the
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(defmacro alambda (parms &body body)
‘(labels ((self ,parms ,@body))

#’self))

(defmacro ablock (tag &rest args)
‘(block ,tag

,(funcall (alambda (args)
(case (length args)
(0 nil)
(1 (car args))
(t ‘(let ((it ,(car args)))

,(self (cdr args))))))
args)))

Figure 14.2: More anaphoric variants.

gensym and instead bound it immediately to the result of the test expression, as
in:

(defmacro acond (&rest clauses) ; wrong
(if (null clauses)

nil
(let ((cl1 (car clauses)))
‘(let ((it ,(car cl1)))

(if it
(progn ,@(cdr cl1))
(acond ,@(cdr clauses)))))))

then that binding of itwould also have within its scope the following test expres-
sion.

Figure 14.2 contains some more complicated anaphoric variants. The macro
alambda is for referring literally to recursive functions. When does one want to
refer literally to a recursive function? We can refer literally to a function by using
a sharp-quoted lambda-expression:

#’(lambda (x) (* x 2))

But as Chapter 2 explained, you can’t express a recursive function with a simple
lambda-expression. Instead you have to define a local function with labels. The
following function (reproduced from page 22)
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(defun count-instances (obj lists)
(labels ((instances-in (list)

(if list
(+ (if (eq (car list) obj) 1 0)

(instances-in (cdr list)))
0)))

(mapcar #’instances-in lists)))

takes an object and a list, and returns a list of the number of occurrences of the
object in each element:

> (count-instances ’a ’((a b c) (d a r p a) (d a r) (a a)))
(1 2 1 2)

With anaphora we can make what amounts to a literal recursive function. The
alambda macro uses labels to create one, and thus can be used to express, for
example, the factorial function:

(alambda (x) (if (= x 0) 1 (* x (self (1- x)))))

Using alambda we can define an equivalent version of count-instances as
follows:

(defun count-instances (obj lists)
(mapcar (alambda (list)

(if list
(+ (if (eq (car list) obj) 1 0)

(self (cdr list)))
0))

lists))

Unlike the other macros in Figures 14.1 and 14.2, which all capture it, alambda
captures self. An instance of alambda expands into a labels expression in
which self is bound to the function being defined. As well as being smaller,
alambda expressions look like familiar lambda expressions, making code which
uses them easier to read.

The newmacro is used in the definition of ablock, an anaphoric version of the
built-in block special form. In a block, the arguments are evaluated left-to-right.
The same happens in an ablock, but within each the variable it will be bound to
the value of the previous expression.

This macro should be used with discretion. Though convenient at times,
ablockwould tend to beat what could be nice functional programs into imperative
form. The following is, unfortunately, a characteristically ugly example:
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> (ablock north-pole
(princ "ho ")
(princ it)
(princ it)
(return-from north-pole))

ho ho ho
NIL

Whenever a macro which does intentional variable capture is exported to
another package, it is necessary also to export the symbol being captured. For
example, wherever aif is exported, it should be as well. Otherwise the itwhich
appears in the macro definition would be a different symbol from an it used in a
macro call.

14.2 Failure

In Common Lisp the symbol nil has at least three different jobs. It is first of all
the empty list, so that

> (cdr ’(a))
NIL

As well as the empty list, nil is used to represent falsity, as in

> (= 1 0)
NIL

And finally, functions return nil to indicate failure. For example, the job of the
built-in find-if is to return the first element of a list which satisfies some test.
If no such element is found, find-if returns nil:

> (find-if #’oddp ’(2 4 6))
NIL

Unfortunately, we can’t tell this case from the one in which find-if succeeds,
but succeeds in finding nil:

> (find-if #’null ’(2 nil 6))
NIL

In practice, it doesn’t cause too much trouble to use nil to represent both falsity
and the empty list. In fact, it can be rather convenient. However, it is a pain to
have nil represent failure as well, because it means that the result returned by a
function like find-if can be ambiguous.
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The problem of distinguishing between failure and a nil return value arises
with any function which looks things up. Common Lisp offers no less than three
solutions to the problem. The most common approach, before multiple return
values, was to return gratuitous list structure. There is no trouble distinguishing
failure with assoc, for example; when successful it returns the whole pair in
question:

> (setq synonyms ’((yes . t) (no . nil)))
((YES . T) (NO))
> (assoc ’no synonyms)
(NO)

Following this approach, if we were worried about ambiguity with find-if, we
would use member-if, which instead of just returning the element satisfying the
test, returns the whole cdr which begins with it:

> (member-if #’null ’(2 nil 6))
(NIL 6)

Since the advent of multiple return values, there has been another solution to
this problem: use one value for data and a second to indicate success or failure.
The built-in gethash works this way. It always returns two values, the second
indicating whether anything was found:

> (setf edible (make-hash-table)
(gethash ’olive-oil edible) t
(gethash ’motor-oil edible) nil)

NIL
> (gethash ’motor-oil edible)
NIL
T

So if you want to detect all three possible cases, you can use an idiom like the
following:

(defun edible? (x)
(multiple-value-bind (val found?) (gethash x edible)
(if found?

(if val ’yes ’no)
’maybe)))

thereby distinguishing falsity from failure:

> (mapcar #’edible? ’(motor-oil olive-oil iguana))
(NO YES MAYBE)
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Common Lisp supports yet a third way of indicating failure: to have the
access function take as an argument a special object, presumably a gensym, to
be returned in case of failure. This approach is used with get, which takes an
optional argument saying what to return if the specified property isn’t found:

> (get ’life ’meaning (gensym))
#:G618

Where multiple return values are possible, the approach used by gethash
is the cleanest. We don’t want to have to pass additional arguments to every
access function, as we do with get. And between the other two alternatives, using
multiple values is themore general; find-if could bewritten to return two values,
but gethash could not, without consing, be written to return disambiguating list
structure. Thus in writing new functions for lookup, or for other tasks where
failure is possible, it will usually be better to follow the model of gethash.

The idiom found in edible? is just the sort of bookkeeping which is well
hidden by a macro. For access functions like gethashwe will want a new version
of aifwhich, instead of binding and testing the same value, binds the first but also
tests the second. The new version of aif, called aif2, is shown in Figure 14.3.
Using it we could write edible? as:

(defun edible? (x)
(aif2 (gethash x edible)

(if it ’yes ’no)
’maybe))

Figure 14.3 also contains similarly altered versions of awhen, awhile, and
acond. For an example of the use of acond2, see the definition of match on
page 239. By using this macro we are able to express in the form of a cond a
function that would otherwise be much longer and less symmetrical.

The built-in read indicates failure in the same way as get. It takes optional
arguments saying whether or not to generate an error in case of eof, and if not,
what value to return. Figure 14.4 contains an alternative version of read which
uses a second return value to indicate failure: read2 returns two values, the input
expression and a flag which is nil upon eof. It calls read with a gensym to
be returned in case of eof, but to save the trouble of building the gensym each
time read2 is called, the function is defined as a closure with a private copy of a
gensym made at compile time.

Figure 14.4 also contains a convenient macro to iterate over the expressions in
a file, written using awhile2 and read2. Using do-filewe could, for example,
write a version of load as:

(defun our-load (filename)
(do-file filename (eval it)))
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(defmacro aif2 (test &optional then else)
(let ((win (gensym)))
‘(multiple-value-bind (it ,win) ,test

(if (or it ,win) ,then ,else))))

(defmacro awhen2 (test &body body)
‘(aif2 ,test

(progn ,@body)))

(defmacro awhile2 (test &body body)
(let ((flag (gensym)))
‘(let ((,flag t))

(while ,flag
(aif2 ,test

(progn ,@body)
(setq ,flag nil))))))

(defmacro acond2 (&rest clauses)
(if (null clauses)

nil
(let ((cl1 (car clauses))

(val (gensym))
(win (gensym)))

‘(multiple-value-bind (,val ,win) ,(car cl1)
(if (or ,val ,win)

(let ((it ,val)) ,@(cdr cl1))
(acond2 ,@(cdr clauses)))))))

Figure 14.3: Multiple-value anaphoric macros.

14.3 Referential Transparency

Anaphoric macros are sometimes said to violate referential transparency, which
Gelernter and Jagannathan define as follows:

A language is referentially transparent if (a) every subexpression
can be replaced by any other that’s equal to it in value and (b) all◦
occurrences of an expression within a given context yield the same
value.

Note that this standard applies to languages,not to programs. No languagewith
assignment is referentially transparent. The first and the last x in this expression



14.3 REFERENTIAL TRANSPARENCY 199

(let ((g (gensym)))
(defun read2 (&optional (str *standard-input*))
(let ((val (read str nil g)))
(unless (equal val g) (values val t)))))

(defmacro do-file (filename &body body)
(let ((str (gensym)))
‘(with-open-file (,str ,filename)

(awhile2 (read2 ,str)
,@body))))

Figure 14.4: File utilities.

(list x
(setq x (not x))
x)

yield different values, because a setq intervenes. Admittedly, this is ugly code.
The fact that it is even possible means that Lisp is not referentially transparent.

Norvig mentions that it would be convenient to redefine if as: ◦

(defmacro if (test then &optional else)
‘(let ((that ,test))

(if that ,then ,else)))

but rejects this macro on the grounds that it violates referential transparency.
However, the problem here comes from redefining built-in operators, not from

using anaphora. Clause (b) of the definition above requires that an expression
always return the same value “within a given context.” It is no problem if, within
this let expression,

(let ((that ’which))
...)

the symbol that denotes a new variable, because let is advertised to create a
new context.

The trouble with the macro above is that it redefines if, which is not supposed
to create a new context. This problem goes away if we give anaphoric macros
distinct names. (As of CLTL2, it is illegal to redefine if anyway.) As long as it is
part of the definition of aif that it establishes a new context in which it is a new
variable, such a macro does not violate referential transparency.
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Now, aif does violate another convention, which has nothing to do with
referential transparency: that newly established variables somehow be indicated
in the source code. The let expression above clearly indicates that that will
refer to a new variable. It could be argued that the binding of it within an aif is
not so clear. However, this is not a very strong argument: aif only creates one
variable, and the creation of that variable is the only reason to use it.

Common Lisp itself does not treat this convention as inviolable. The binding
of the CLOS function call-next-methoddepends on the context in just the same
way that the binding of the symbol it does within the body of an aif. (For a
suggestion of how call-next-method would be implemented, see the macro
defmeth on page 358.) In any case, such conventions are only supposed to be
a means to an end: programs which are easy to read. And anaphora do make
programs easier to read, just as they make English easier to read.
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Macros Returning Functions

Chapter 5 showed how to write functions which return other functions. Macros
make the task of combining operators much easier. This chapter will show how to
usemacros to build abstractionswhich are equivalent to those defined in Chapter 5,
but cleaner and more efficient.

15.1 Building Functions

If f and g are functions, then f◦g(x) = f (g(x)). Section 5.4 showed how to
implement the ◦ operator as a Lisp function called compose:

> (funcall (compose #’list #’1+) 2)
(3)

In this section,we considerways to define better function builderswithmacros.
Figure 15.1 contains a general function-builder called fn, which builds compound
functions from their descriptions. Its argument should be an expression of the
form (operator . arguments). The operator can be the name of a function or
macro—or compose, which is treated specially. The arguments can be names of
functions or macros of one argument, or expressions that could be arguments to
fn. For example,

(fn (and integerp oddp))

yields a function equivalent to

#’(lambda (x) (and (integerp x) (oddp x)))

201
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(defmacro fn (expr) ‘#’,(rbuild expr))

(defun rbuild (expr)
(if (or (atom expr) (eq (car expr) ’lambda))

expr
(if (eq (car expr) ’compose)

(build-compose (cdr expr))
(build-call (car expr) (cdr expr)))))

(defun build-call (op fns)
(let ((g (gensym)))
‘(lambda (,g)

(,op ,@(mapcar #’(lambda (f)
‘(,(rbuild f) ,g))

fns)))))

(defun build-compose (fns)
(let ((g (gensym)))
‘(lambda (,g)

,(labels ((rec (fns)
(if fns

‘(,(rbuild (car fns))
,(rec (cdr fns)))

g)))
(rec fns)))))

Figure 15.1: General function-building macro.

If we use compose as the operator, we get a function representing the compo-
sition of the arguments, but without the explicit funcalls that were needed when
compose was defined as a function. For example,

(fn (compose list 1+ truncate))

expands into:

#’(lambda (#:g1) (list (1+ (truncate #:g1))))

which enables inline compilation of simple functions like list and 1+. The
fn macro takes names of operators in the general sense; lambda-expressions are
allowed too, as in
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(fn (compose (lambda (x) (+ x 3)) truncate))

which expands into

#’(lambda (#:g2) ((lambda (x) (+ x 3)) (truncate #:g2)))

Here the function expressed as a lambda-expression will certainly be compiled
inline, whereas a sharp-quoted lambda-expression given as an argument to the
function compose would have to be funcalled.

Section 5.4 showed how to define three more function builders: fif, fint,
and fun. These are now subsumed in the general fn macro. Using and as the
operator yields the intersection of the operators given as arguments:

> (mapcar (fn (and integerp oddp))
’(c 3 p 0))

(NIL T NIL NIL)

while or yields the union:

> (mapcar (fn (or integerp symbolp))
’(c 3 p 0.2))

(T T T NIL)

and if yields a function whose body is a conditional:

> (map1-n (fn (if oddp 1+ identity)) 6)
(2 2 4 4 6 6)

However, we can use other Lisp functions besides these three:

> (mapcar (fn (list 1- identity 1+))
’(1 2 3))

((0 1 2) (1 2 3) (2 3 4))

and the arguments in the fn expression may themselves be expressions:

> (remove-if (fn (or (and integerp oddp)
(and consp cdr)))

’(1 (a b) c (d) 2 3.4 (e f g)))
(C (D) 2 3.4)

Making fn treat compose as a special case does notmake it anymore powerful.
If you nest the arguments to fn, you get functional composition. For example,

(fn (list (1+ truncate)))
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expands into:

#’(lambda (#:g1)
(list ((lambda (#:g2) (1+ (truncate #:g2))) #:g1)))

which behaves like

(compose #’list #’1+ #’truncate)

The fn macro treats compose as a special case only to make such calls easier to
read.

15.2 Recursion on Cdrs

Sections 5.5 and 5.6 showed how to write functions that build recursive functions.
The following two sections show how anaphoric macros can provide a cleaner
interface to the functions we defined there.

Section 5.5 showed how to define a flat list recurser builder called lrec. With
lrec we can express a call to:

(defun our-every (fn lst)
(if (null lst)

t
(and (funcall fn (car lst))

(our-every fn (cdr lst)))))

for e.g. oddp as:

(lrec #’(lambda (x f) (and (oddp x) (funcall f)))
t)

Here macros could make life easier. How much do we really have to say to
express recursive functions? If we can refer anaphorically to the current car of
the list (as it) and the recursive call (as rec), we should be able to make do with
something like:

(alrec (and (oddp it) rec) t)

Figure 15.2 contains the definition of the macro which will allow us to say this.

> (funcall (alrec (and (oddp it) rec) t)
’(1 3 5))

T
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(defmacro alrec (rec &optional base)
"cltl2 version"
(let ((gfn (gensym)))
‘(lrec #’(lambda (it ,gfn)

(symbol-macrolet ((rec (funcall ,gfn)))
,rec))

,base)))

(defmacro alrec (rec &optional base)
"cltl1 version"
(let ((gfn (gensym)))
‘(lrec #’(lambda (it ,gfn)

(labels ((rec () (funcall ,gfn)))
,rec))

,base)))

(defmacro on-cdrs (rec base &rest lsts)
‘(funcall (alrec ,rec #’(lambda () ,base)) ,@lsts))

Figure 15.2: Macros for list recursion.

The new macro works by transforming the expression given as the second
argument into a function to be passed to lrec. Since the second argument may
refer anaphorically to it or rec, in the macro expansion the body of the function
must appear within the scope of bindings established for these symbols.

Figure 15.2 actually has two different versions of alrec. The version used
in the preceding examples requires symbol macros (Section 7.11). Only recent
versions of Common Lisp have symbol macros, so Figure 15.2 also contains
a slightly less convenient version of alrec in which rec is defined as a local
function. The price is that, as a function, rec would have to be enclosed within
parentheses:

(alrec (and (oddp it) (rec)) t)

The original version is preferable inCommonLisp implementationswhich provide
symbol-macrolet.

Common Lisp, with its separate name-space for functions, makes it awkward
to use these recursion builders to define named functions:

(setf (symbol-function ’our-length)
(alrec (1+ rec) 0))
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(defun our-copy-list (lst)
(on-cdrs (cons it rec) nil lst))

(defun our-remove-duplicates (lst)
(on-cdrs (adjoin it rec) nil lst))

(defun our-find-if (fn lst)
(on-cdrs (if (funcall fn it) it rec) nil lst))

(defun our-some (fn lst)
(on-cdrs (or (funcall fn it) rec) nil lst))

Figure 15.3: Common Lisp functions defined with on-cdrs.

The final macro in Figure 15.2 is intended to make this more abstract. Using
on-cdrs we could say instead:

(defun our-length (lst)
(on-cdrs (1+ rec) 0 lst))

(defun our-every (fn lst)
(on-cdrs (and (funcall fn it) rec) t lst))

Figure 15.3 shows some existing Common Lisp functions defined with the
new macro. Expressed with on-cdrs, these functions are reduced to their most
basic form, and we notice similarities between them which might not otherwise
have been apparent.

Figure 15.4 contains some new utilities which can easily be defined with
on-cdrs. The first three, unions, intersections, and differences imple-
ment set union, intersection, and complement, respectively. Common Lisp has
built-in functions for these operations, but they can only take two lists at a time.
Thus if we want to find the union of three lists we have to say:

> (union ’(a b) (union ’(b c) ’(c d)))
(A B C D)

The new unions behaves like union, but takes an arbitrary number of arguments,
so that we could say:

> (unions ’(a b) ’(b c) ’(c d))
(D C A B)
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(defun unions (&rest sets)
(on-cdrs (union it rec) (car sets) (cdr sets)))

(defun intersections (&rest sets)
(unless (some #’null sets)
(on-cdrs (intersection it rec) (car sets) (cdr sets))))

(defun differences (set &rest outs)
(on-cdrs (set-difference rec it) set outs))

(defun maxmin (args)
(when args
(on-cdrs (multiple-value-bind (mx mn) rec

(values (max mx it) (min mn it)))
(values (car args) (car args))
(cdr args))))

Figure 15.4: New utilities defined with on-cdrs.

Like union, unions does not preserve the order of the elements in the initial lists.
The same relation holds between the Common Lisp intersection and the

more general intersections. In the definition of this function, the initial test
for null arguments was added for efficiency; it short-circuits the computation if
one of the sets is empty.

Common Lisp also has a function called set-difference, which takes two
lists and returns the elements of the first which are not in the second:

> (set-difference ’(a b c d) ’(a c))
(D B)

Our new version handles multiple arguments much as - does. For example,
(differences x y z) is equivalent to(set-difference x (unions y z)),
though without the consing that the latter would entail.

> (differences ’(a b c d e) ’(a f) ’(d))
(B C E)

These set operators are intended only as examples. There is no real need for
them, because they represent a degenerate case of list recursion already handled
by the built-in reduce. For example, instead of

(unions ...)
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you might as well say just

((lambda (&rest args) (reduce #’union args)) ...)

In the general case, on-cdrs is more powerful than reduce, however.
Because rec refers to a call instead of a value, we can use on-cdrs to create

functionswhich returnmultiple values. The final function in Figure 15.4, maxmin,
takes advantage of this possibility to find both the maximum and minimum ele-
ments in a single traversal of a list:

> (maxmin ’(3 4 2 8 5 1 6 7))
8
1

It would also have been possible to use on-cdrs in some of the code which
appears in later chapters. For example, compile-cmds (page 310)

(defun compile-cmds (cmds)
(if (null cmds)

’regs
‘(,@(car cmds) ,(compile-cmds (cdr cmds)))))

could have been defined as simply:

(defun compile-cmds (cmds)
(on-cdrs ‘(,@it ,rec) ’regs cmds))

15.3 Recursion on Subtrees

What macros did for recursion on lists, they can also do for recursion on trees.
In this section, we use macros to define cleaner interfaces to the tree recursers
defined in Section 5.6.

In Section 5.6 we defined two tree recursion builders,ttrav, which always tra-
verses the whole tree, and trecwhich is more complex, but allows you to control
when recursion stops. Using these functions we could express our-copy-tree

(defun our-copy-tree (tree)
(if (atom tree)

tree
(cons (our-copy-tree (car tree))

(if (cdr tree) (our-copy-tree (cdr tree))))))

as
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(ttrav #’cons)

and a call to rfind-if

(defun rfind-if (fn tree)
(if (atom tree)

(and (funcall fn tree) tree)
(or (rfind-if fn (car tree))

(and (cdr tree) (rfind-if fn (cdr tree))))))

for e.g. oddp as:

(trec #’(lambda (o l r) (or (funcall l) (funcall r)))
#’(lambda (tree) (and (oddp tree) tree)))

Anaphoric macros can make a better interface to trec, as they did for lrec in
the previous section. A macro sufficient for the general case will have to be able
to refer anaphorically to three things: the current tree, which we’ll call it, the
recursion down the left subtree, which we’ll call left, and the recursion down
the right subtree, which we’ll call right. With these conventions established, we
should be able to express the preceding functions in terms of a new macro thus:

(atrec (cons left right))

(atrec (or left right) (and (oddp it) it))

Figure 15.5 contains the definition of this macro.
In versions of Lispwhich don’t have symbol-macrolet,we can define atrec

using the second definition in Figure 15.5. This version defines left and right
as local functions, so our-copy-treewould have to be expressed as:

(atrec (cons (left) (right)))

For convenience, we also define a macro on-trees, which is analogous to
on-cdrs from the previous section. Figure 15.6 shows the four functions from
Section 5.6 defined with on-trees.

As noted in Chapter 5, functions built by the recurser generators defined in
that chapter will not be tail-recursive. Using on-cdrs or on-trees to define a
function will not necessarily yield the most efficient implementation. Like the
underlying trec and lrec, these macros are mainly for use in prototypes and in
parts of a program where efficiency is not paramount. However, the underlying
idea of this chapter and Chapter 5 is that one can write function generators and
put a clean macro interface on them. This same technique could equally well be
used to build function generators which yielded particularly efficient code.
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(defmacro atrec (rec &optional (base ’it))
"cltl2 version"
(let ((lfn (gensym)) (rfn (gensym)))
‘(trec #’(lambda (it ,lfn ,rfn)

(symbol-macrolet ((left (funcall ,lfn))
(right (funcall ,rfn)))

,rec))
#’(lambda (it) ,base))))

(defmacro atrec (rec &optional (base ’it))
"cltl1 version"
(let ((lfn (gensym)) (rfn (gensym)))
‘(trec #’(lambda (it ,lfn ,rfn)

(labels ((left () (funcall ,lfn))
(right () (funcall ,rfn)))

,rec))
#’(lambda (it) ,base))))

(defmacro on-trees (rec base &rest trees)
‘(funcall (atrec ,rec ,base) ,@trees))

Figure 15.5: Macros for recursion on trees.

(defun our-copy-tree (tree)
(on-trees (cons left right) it tree))

(defun count-leaves (tree)
(on-trees (+ left (or right 1)) 1 tree))

(defun flatten (tree)
(on-trees (nconc left right) (mklist it) tree))

(defun rfind-if (fn tree)
(on-trees (or left right)

(and (funcall fn it) it)
tree))

Figure 15.6: Functions defined using on-trees.
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(defconstant unforced (gensym))

(defstruct delay forced closure)

(defmacro delay (expr)
(let ((self (gensym)))
‘(let ((,self (make-delay :forced unforced)))

(setf (delay-closure ,self)
#’(lambda ()

(setf (delay-forced ,self) ,expr)))
,self)))

(defun force (x)
(if (delay-p x)

(if (eq (delay-forced x) unforced)
(funcall (delay-closure x))
(delay-forced x))

x))

Figure 15.7: Implementation of force and delay.

15.4 Lazy Evaluation

Lazy evaluation means only evaluating an expression when you need its value.
One way to use lazy evaluation is to build an object known as a delay. A delay is
a placeholder for the value of some expression. It represents a promise to deliver
the value of the expression if it is needed at some later time. Meanwhile, since
the promise is a Lisp object, it can serve many of the purposes of the value it
represents. And when the value of the expression is needed, the delay can return
it.

Scheme has built-in support for delays. The Scheme operators force and
delay can be implemented in Common Lisp as in Figure 15.7. A delay is
represented as a two-part structure. The first field indicates whether the delay has
been evaluated yet, and if it has, contains the value. The second field contains a
closure which can be called to find the value that the delay represents. The macro
delay takes an expression, and returns a delay representing its value:

> (let ((x 2))
(setq d (delay (1+ x))))

#S(DELAY ...)
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To call the closure within a delay is to force the delay. The function force
takes any object: for ordinary objects it is the identity function, but for delays it
is a demand for the value that the delay represents.

> (force ’a)
A
> (force d)
3

We use force whenever we are dealing with objects that might be delays. For
example, if we are sorting a list which might contain delays, we would say:

(sort lst #’(lambda (x y) (> (force x) (force y))))

It’s slightly inconvenient to use delays in this naked form. In a real application,
they might be hidden beneath another layer of abstraction.
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Macro-Defining Macros

Patterns in code often signal the need for new abstractions. This rule holds just as
much for the code in macros themselves. When several macros have definitions
of a similar form, we may be able to write a macro-defining macro to produce
them. This chapter presents three examples of macro-defining macros: one to
define abbreviations, one to define access macros, and a third to define anaphoric
macros of the type described in Section 14.1.

16.1 Abbreviations

The simplest use of macros is as abbreviations. Some Common Lisp operators
have rather long names. Ranking high among them (though by no means the
longest) is destructuring-bind, which has 18 characters. A corollary of ◦
Steele’s principle (page 43) is that commonly used operators ought to have short
names. (“We think of addition as cheap partly because we can notate it with a
single character: ‘+’.”) The built-in destructuring-bind macro introduces a
new layer of abstraction, but the actual gain in brevity is masked by its long name:

(let ((a (car x)) (b (cdr x))) ...)

(destructuring-bind (a . b) x ...)

A program, like printed text, is easiest to read when it contains no more than about
70 characters per line. We begin at a disadvantage when the lengths of individual
names are a quarter of that.

213
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(defmacro abbrev (short long)
‘(defmacro ,short (&rest args)

‘(,’,long ,@args)))

(defmacro abbrevs (&rest names)
‘(progn

,@(mapcar #’(lambda (pair)
‘(abbrev ,@pair))

(group names 2))))

Figure 16.1: Automatic definition of abbreviations.

Fortunately, in a language like Lisp you don’t have to live with all the decisions
of the designers. Having defined

(defmacro dbind (&rest args)
‘(destructuring-bind ,@args))

you need never use the long name again. Likewise for multiple-value-bind,
which is longer and more frequently used.

(defmacro mvbind (&rest args)
‘(multiple-value-bind ,@args))

Notice how nearly identical are the definitions of dbind and mvbind. Indeed,
this formula of &rest and comma-at will suffice to define an abbreviation for any
function,1 macro, or special form. Why crank out more definitions on the model
of mvbind when we could have a macro do it for us?

To define a macro-defining macro we will often need nested backquotes.
Nested backquotes are notoriously hard to understand. Eventually common cases
will become familiar, but one should not expect to be able to look at an arbitrary
backquoted expression and say what it will yield. It is not a fault in Lisp that
this is so, any more than it is a fault of the notation that one can’t just look at
a complicated integral and know what its value will be. The difficulty is in the
problem, not the notation.

However, as we do when finding integrals, we can break up the analysis of
backquotes into small steps, each of which can easily be followed. Suppose we
want to write a macro abbrev, which will allow us to define mvbind just by
saying

1Though the abbreviation can’t be passed to apply or funcall.
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(abbrev mvbind multiple-value-bind)

Figure 16.1 contains a definition of this macro. Where did it come from? The
definition of such amacro can be derived from a sample expansion. One expansion
is:

(defmacro mvbind (&rest args)
‘(multiple-value-bind ,@args))

The derivation will be easier if we pull multiple-value-bind from within the
backquote, because we know it will be an argument to the eventual macro. This
yields the equivalent definition

(defmacro mvbind (&rest args)
(let ((name ’multiple-value-bind))
‘(,name ,@args)))

Now we take this expression and turn it into a template. We affix a backquote,
and replace the expressions which will vary, with variables.

‘(defmacro ,short (&rest args)
(let ((name ’,long))
‘(,name ,@args)))

The final step is to simplify this expression by substituting ’,long for namewithin
the inner backquote:

‘(defmacro ,short (&rest args)
‘(,’,long ,@args))

which yields the body of the macro defined in Figure 16.1.
Figure 16.1 also contains abbrevs, for cases where we want to define several

abbreviations in one shot.

(abbrevs dbind destructuring-bind
mvbind multiple-value-bind
mvsetq multiple-value-setq)

The user of abbrevs doesn’t have to insert additional parentheses because
abbrevs calls group (page 47) to group its arguments by twos. It’s gener-
ally a good thing for macros to save users from typing logically unnecessary
parentheses, and group will be useful to most such macros.
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(defmacro propmacro (propname)
‘(defmacro ,propname (obj)

‘(get ,obj ’,’,propname)))

(defmacro propmacros (&rest props)
‘(progn

,@(mapcar #’(lambda (p) ‘(propmacro ,p))
props)))

Figure 16.2: Automatic definition of access macros.

16.2 Properties

Lisp offersmanyways to associate propertieswith objects. If the object in question
can be represented as a symbol, one of the most convenient (though least efficient)
ways is to use the symbol’s property list. To describe the fact that an object o has
a property p, the value of which is v, we modify the property list of o:

(setf (get o p) v)

So to say that ball1 has color red, we say:

(setf (get ’ball1 ’color) ’red)

If we’re going to refer often to some property of objects, we can define a macro
to retrieve it:

(defmacro color (obj)
‘(get ,obj ’color))

and thereafter use color in place of get:

> (color ’ball1)
RED

Since macro calls are transparent to setf (see Chapter 12) we can also say:

> (setf (color ’ball1) ’green)
GREEN

Such macros have the advantage of hiding the particular way in which the
program represents the color of an object. Property lists are slow; a later version
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of the program might, for the sake of speed, represent color as a field in a
structure, or an entry in a hash-table. When data is reached through a facade of
macros like color, it becomes easy, even in a comparatively mature program,
to make pervasive changes to the lowest-level code. If a program switches from
using property lists to structures, nothing above the facade of access macros will
have to be changed; none of the code which looks upon the facade need even be
aware of the rebuilding going on behind it.

For the weight property, we can define a macro similar to the one written for
color:

(defmacro weight (obj)
‘(get ,obj ’weight))

Like the abbreviations in the previous section, the definitions of of color and
weight are nearly identical. Here propmacro (Figure 16.2) can play the same
role as abbrev did.

A macro-defining macro can be designed by the same process as any other
macro: look at the macro call, then its intended expansion, then figure out how to
transform the former into the latter. We want

(propmacro color)

to expand into

(defmacro color (obj)
‘(get ,obj ’color))

Though this expression is itself a defmacro, we can still make a template of it,
by backquoting it and putting comma’d parameter names in place of instances
of color. As in the previous section, we begin by transforming it so that no
instances of color are within existing backquotes:

(defmacro color (obj)
(let ((p ’color))
‘(get ,obj ’,p)))

Then we go ahead and make the template,

‘(defmacro ,propname (obj)
(let ((p ’,propname))
‘(get ,obj ’,p)))

which simplifies to ◦
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‘(defmacro ,propname (obj)
‘(get ,obj ’,’,propname))

For cases where a group of property-names all have to be defined as macros,
there is propmacros (Figure 16.2), which expands into a series of individual
calls to propmacro. Like abbrevs, this modest piece of code is actually a
macro-defining-macro-definingmacro.

Though this section dealt with property lists, the technique described here is a
general one. We could use it to define access macros on data stored in any form.

16.3 Anaphoric Macros

Section 14.1 gave definitions of several anaphoricmacros. When you use a macro
like aif or aand, during the evaluation of some arguments the symbol it will be
bound to the values returned by other ones. So instead of

(let ((res (complicated-query)))
(if res

(foo res)))

you can use just

(aif (complicated-query)
(foo it))

and instead of

(let ((o (owner x)))
(and o (let ((a (address o)))

(and a (city a)))))

simply

(aand (owner x) (address it) (city it))

Section 14.1 presented seven anaphoric macros: aif, awhen, awhile, acond,
alambda, ablock, and aand. These seven are by no means the only useful
anaphoric macros of their type. In fact, we can define an anaphoric variant of just
about any Common Lisp function or macro. Many of these macros will be like
mapcon: rarely used, but indispensable when they are needed.

For example, we can define a+ so that, as with aand, it is always bound to
the value returned by the previous argument. The following function calculates
the cost of dining out in Massachusetts:
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(defmacro a+ (&rest args)
(a+expand args nil))

(defun a+expand (args syms)
(if args

(let ((sym (gensym)))
‘(let* ((,sym ,(car args))

(it ,sym))
,(a+expand (cdr args)

(append syms (list sym)))))
‘(+ ,@syms)))

(defmacro alist (&rest args)
(alist-expand args nil))

(defun alist-expand (args syms)
(if args

(let ((sym (gensym)))
‘(let* ((,sym ,(car args))

(it ,sym))
,(alist-expand (cdr args)

(append syms (list sym)))))
‘(list ,@syms)))

Figure 16.3: Definitions of a+ and alist.

(defun mass-cost (menu-price)
(a+ menu-price (* it .05) (* it 3)))

The Massachusetts Meals Tax is 5%, and residents often calculate the tip by
tripling the tax. By this formula, the total cost of the broiled scrod at Dolphin
Seafood is therefore:

> (mass-cost 7.95)
9.54

but this includes salad and a baked potato.
Themacro a+, defined in Figure 16.3,relies on a recursive function,a+expand,

to generate its expansion. The general strategy of a+expand is to cdr down the
list of arguments in the macro call, generating a series of nested let expressions;
each let leaves it bound to a different argument, but also binds a distinct gensym
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(defmacro defanaph (name &optional calls)
(let ((calls (or calls (pop-symbol name))))
‘(defmacro ,name (&rest args)

(anaphex args (list ’,calls)))))

(defun anaphex (args expr)
(if args

(let ((sym (gensym)))
‘(let* ((,sym ,(car args))

(it ,sym))
,(anaphex (cdr args)

(append expr (list sym)))))
expr))

(defun pop-symbol (sym)
(intern (subseq (symbol-name sym) 1)))

Figure 16.4: Automatic definition of anaphoric macros.

to each argument. The expansion function accumulates a list of these gensyms,
and when it reaches the end of the list of arguments it returns a + expression with
the gensyms as the arguments. So the expression

(a+ menu-price (* it .05) (* it 3))

yields the macroexpansion:

(let* ((#:g2 menu-price) (it #:g2))
(let* ((#:g3 (* it 0.05)) (it #:g3))
(let* ((#:g4 (* it 3)) (it #:g4))

(+ #:g2 #:g3 #:g4))))

Figure 16.3 also contains the definition of the analogous alist:

> (alist 1 (+ 2 it) (+ 2 it))
(1 3 5)

Once again, the definitions of a+ and alist are almost identical. If we want
to define more macros like them, these too will be mostly duplicate code. Why
not have a program produce it for us? The macro defanaph in Figure 16.4 will
do so. With defanaph, defining a+ and alist is as simple as
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(defanaph a+)
(defanaph alist)

The expansions of a+ and alist so defined will be identical to the expansions
made by the code in Figure 16.3. Themacro-definingmacro defanaphwill create
an anaphoric variant of anything whose arguments are evaluated according to the
normal evaluation rule for functions. That is, defanaph will work for anything
whose arguments are all evaluated, and evaluated left-to-right. So you couldn’t
use this version of defanaph to define aif or awhile, but you can use it to define
an anaphoric variant of any function.

As a+ called a+expand to generate its expansion, defanaph defines a macro
which will call anaphex to do so. The generic expander anaphex differs from
a+expand only in taking as an argument the function name to appear finally in
the expansion. In fact, a+ could now be defined:

(defmacro a+ (&rest args)
(anaphex args ’(+)))

Neither anaphex nor a+expand need have been defined as distinct functions:
anaphex could have been defined with labels or alambda within defanaph.
The expansion generators are here broken out as separate functions only for the
sake of clarity.

By default, defanaph determines what to call in the expansion by pulling the
first letter (presumably an a) from the front of its argument. (This operation is
performed by pop-symbol.) If the user prefers to specify an alternate name, it
can be given as an optional argument. Although defanaph can build anaphoric
variants of all functions and some macros, it imposes some irksome restrictions:

1. It only works for operators whose arguments are all evaluated.

2. In the macroexpansion, it is always bound to successive arguments. In
some cases—awhen, for example—we want it to stay bound to the value
of the first argument.

3. It won’t work for a macro like setf, which expects a generalized variable
as its first argument.

Let’s consider how to remove some of these restrictions. Part of the first problem
can be solved by solving the second. To generate expansions for a macro like aif,
we need a modified version of anaphexwhich only replaces the first argument in
the macro call:

(defun anaphex2 (op args)
‘(let ((it ,(car args)))

(,op it ,@(cdr args))))
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This nonrecursive version of anaphex doesn’t need to ensure that the macroex-
pansion will bind it to successive arguments, so it can generate an expansion
which won’t necessarily evaluate all the arguments in the macro call. Only the
first argument must be evaluated, in order to bind it to its value. So aif could
be defined as:

(defmacro aif (&rest args)
(anaphex2 ’if args))

This definition would differ from the original on page 191 only in the point where
it would complain if aif were given the wrong number of arguments; for correct
macro calls, the two generate identical expansions.

The third problem, that defanaphwon’t work with generalized variables, can
be solved by using f (page 173) in the expansion. Operators like setf can be
handled by a variant of anaphex2 defined as follows:

(defun anaphex3 (op args)
‘(_f (lambda (it) (,op it ,@(cdr args))) ,(car args)))

This expander assumes that the macro call will have one or more arguments, the
first of which will be a generalized variable. Using it we could define asetf thus:

(defmacro asetf (&rest args)
(anaphex3 ’setf args))

Figure 16.5 shows all three expander functions yoked together under the
control of a single macro, the new defanaph. The user signals the type of macro
expansion desired with the optional rule keyword parameter, which specifies the
evaluation rule to be used for the arguments in the macro call. If this parameter
is:

:all (the default) the macroexpansion will be on the model of alist. All the
arguments in the macro call will be evaluated, with it always bound to the
value of the previous argument.

:first the macroexpansionwill be on the model of aif. Only the first argument
will necessarily be evaluated, and it will be bound to its value.

:place the macroexpansion will be on the model of asetf. The first argument
will be treated as a generalized variable, and it will be bound to its initial
value.

Using the new defanaph, some of the previous examples would be defined as
follows:
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(defmacro defanaph (name &optional &key calls (rule :all))
(let* ((opname (or calls (pop-symbol name)))

(body (case rule
(:all ‘(anaphex1 args ’(,opname)))
(:first ‘(anaphex2 ’,opname args))
(:place ‘(anaphex3 ’,opname args)))))

‘(defmacro ,name (&rest args)
,body)))

(defun anaphex1 (args call)
(if args

(let ((sym (gensym)))
‘(let* ((,sym ,(car args))

(it ,sym))
,(anaphex1 (cdr args)

(append call (list sym)))))
call))

(defun anaphex2 (op args)
‘(let ((it ,(car args))) (,op it ,@(cdr args))))

(defun anaphex3 (op args)
‘(_f (lambda (it) (,op it ,@(cdr args))) ,(car args)))

Figure 16.5: More general defanaph.

(defanaph alist)
(defanaph aif :rule :first)
(defanaph asetf :rule :place)

One of the advantages ofasetf is that itmakes it possible to define a large class
of macros on generalized variables without worrying about multiple evaluation.
For example, we could define incf as:

(defmacro incf (place &optional (val 1))
‘(asetf ,place (+ it ,val)))

and, say, pull (page 173) as:

(defmacro pull (obj place &rest args)
‘(asetf ,place (delete ,obj it ,@args)))
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Read-Macros

The three big moments in a Lisp expression’s life are read-time, compile-time,
and runtime. Functions are in control at runtime. Macros give us a chance to
perform transformations on programs at compile-time. This chapter discusses
read-macros, which do their work at read-time.

17.1 Macro Characters

In keeping with the general philosophy of Lisp, you have a great deal of control
over the reader. Its behavior is controlled by properties and variables that can
all be changed on the fly. The reader can be programmed at several levels. The
easiest way to change its behavior is by defining new macro characters.

Amacro character is a character which exacts special treatment from the Lisp
reader. A lower-case a, for example, is ordinarily handled just like a lower-case
b, but a left parenthesis is something different: it tells Lisp to begin reading a list.
Each such character has a function associated with it that tells the Lisp reader what
to do when the character is encountered. You can change the function associated
with an existing macro character, or define new macro characters of your own.

The built-in function set-macro-character provides one way to define
read-macros. It takes a character and a function, and thereafter when read
encounters the character, it returns the result of calling the function.

One of the oldest read-macros in Lisp is ’, the quote. You could do without
’ by always writing (quote a) instead of ’a, but this would be tiresome and
would make your code harder to read. The quote read-macro makes it possible to
use ’a as an abbreviation for (quote a). We could define it as in Figure 17.1.

224
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(set-macro-character #\’
#’(lambda (stream char)

(list ’quote (read stream t nil t))))

Figure 17.1: Possible definition of ’.

When read encounters an instance of ’ in a normal context (e.g. not in "a’b" or
|a’b|), it will return the result of calling this function on the current stream and
character. (The function ignores this second parameter, which will always be the
quote character.) So when read sees ’a, it will return (quote a).

The last three arguments to read control respectively whether encountering
an end-of-file should cause an error, what value to return otherwise, and whether
the call to read occurs within a call to read. In nearly all read-macros, the second
and fourth arguments should be t, and the third argument is therefore irrelevant.

Read-macros and ordinary macros are both functions underneath. And like
the functions that generatemacro expansions, the functions associated with macro
characters shouldn’t have side-effects, except on the stream fromwhich they read.
Common Lisp explicitly makes no guarantees about when, or how often, the
function associated with a read-macro will be called. (See CLTL2, p. 543.)

Macros and read-macros see your program at different stages. Macros get
hold of the program when it has already been parsed into Lisp objects by the
reader, and read-macros operate on a program while it is still text. However, by
invoking read on this text, a read-macro can, if it chooses, get parsed Lisp objects
as well. Thus read-macros are at least as powerful as ordinary macros.

Indeed, read-macros are more powerful in at least two ways. A read-macro
affects everything read by Lisp, while a macro will only be expanded in code.
And since read-macros generally call read recursively, an expression like

’’a

becomes

(quote (quote a))

whereas if we had tried to define an abbreviation for quote using a normal macro,

(defmacro q (obj)
‘(quote ,obj))
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(set-dispatch-macro-character #\# #\?
#’(lambda (stream char1 char2)

‘#’(lambda (&rest ,(gensym))
,(read stream t nil t))))

Figure 17.2: A read-macro for constant functions.

it would work in isolation,

> (eq ’a (q a))
T

but not when nested. For example,

(q (q a))

would expand into

(quote (q a))

17.2 Dispatching Macro Characters

The sharp-quote, like other read-macros beginning with #, is an example of a
subspecies called dispatching read-macros. These appear as two characters, the
first of which is called the dispatching character. The purpose of such read-macros
is simply to make the most of the ASCII character set; one can only have so many
one-character read-macros.

You can (with make-dispatch-macro-character) define your own dis-
patching macro characters, but since # is already defined as one, you may as well
use it. Some combinations beginning with # are explicitly reserved for your use;
others are available in that they do not yet have a predefined meaning in Common
Lisp. The complete list appears in CLTL2, p. 531.

New dispatching macro character combinations can be defined by calling
the function set-dispatch-macro-character, like set-macro-character
except that it takes two character arguments. One of the combinations reserved
to the programmer is #?. Figure 17.2 shows how to define this combination as
a read-macro for constant functions. Now #?2 will be read as a function which
takes any number of arguments and returns 2. For example:

> (mapcar #?2 ’(a b c))
(2 2 2)
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(set-macro-character #\] (get-macro-character #\)))

(set-dispatch-macro-character #\# #\[
#’(lambda (stream char1 char2)

(let ((accum nil)
(pair (read-delimited-list #\] stream t)))

(do ((i (ceiling (car pair)) (1+ i)))
((> i (floor (cadr pair)))
(list ’quote (nreverse accum)))

(push i accum)))))

Figure 17.3: A read-macro defining delimiters.

This example makes the new operator look rather pointless, but in programs that
use a lot of functional arguments, constant functions are often needed. In fact,
some dialects provide a built-in function called always for defining them.

Note that it is perfectly ok to use macro characters in the definition of this
macro character: as with any Lisp expression, they disappear when the definition
is read. It is also fine to use macro-characters after the #?. The definition of #?
calls read, so macro-characters like ’ and #’ behave as usual:

> (eq (funcall #?’a) ’a)
T
> (eq (funcall #?#’oddp) (symbol-function ’oddp))
T

17.3 Delimiters

After simple macro characters, the most commonly defined macro characters
are list delimiters. Another character combination reserved for the user is #[.
Figure 17.3 gives an example of how this character might be defined as a more
elaborate kind of left parenthesis. It defines an expression of the form #[x y] to
read as a list of all the integers between x and y, inclusive:

> #[2 7]
(2 3 4 5 6 7)

The only new thing about this read-macro is the call to read-delimited-list,
a built-in function provided just for such cases. Its first argument is the character
to treat as the end of the list. For ] to be recognized as a delimiter, it must first be
given this role, hence the preliminary call to set-macro-character.
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(defmacro defdelim (left right parms &body body)
‘(ddfn ,left ,right #’(lambda ,parms ,@body)))

(let ((rpar (get-macro-character #\) )))
(defun ddfn (left right fn)
(set-macro-character right rpar)
(set-dispatch-macro-character #\# left
#’(lambda (stream char1 char2)

(apply fn
(read-delimited-list right stream t))))))

Figure 17.4: A macro for defining delimiter read-macros.

Most potential delimiter read-macro definitions will duplicate a lot of the
code in Figure 17.3. A macro could put a more abstract interface on all this
machinery. Figure 17.4 shows howwe might define a utility for defining delimiter
read-macros. The defdelim macro takes two characters, a parameter list, and a
body of code. The parameter list and the body of code implicitly define a function.
A call to defdelim defines the first character as a dispatching read-macro which
reads up to the second, then returns the result of applying this function to what it
read.

Incidentally, the body of the function in Figure 17.3 also cries out for a utility—
for one we have already defined, in fact: mapa-b, from page 54. Using defdelim
and mapa-b, the read-macro defined in Figure 17.3 could now be written:

(defdelim #\[ #\] (x y)
(list ’quote (mapa-b #’identity (ceiling x) (floor y))))

Another useful delimiter read-macrowould be one for functional composition.
Section 5.4 defined an operator for functional composition:

> (let ((f1 (compose #’list #’1+))
(f2 #’(lambda (x) (list (1+ x)))))

(equal (funcall f1 7) (funcall f2 7)))
T

When we are composing built-in functions like list and 1+, there is no reason
to wait until runtime to evaluate the call to compose. Section 5.7 suggested an
alternative; by prefixing the sharp-dot read-macro to a compose expression,

#.(compose #’list #’1+)
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(defdelim #\{ #\} (&rest args)
‘(fn (compose ,@args)))

Figure 17.5: A read-macro for functional composition.

we could cause it to be evaluated at read-time.
Here we show a similar but cleaner solution. The read-macro in Figure 17.5

defines an expression of the form #{f 1 f 2 . . . f n} to read as the composition of
f 1, f 2, . . . , f n. Thus:

> (funcall #{list 1+} 7)
(8)

It works by generating a call to fn (page 202), which will create the function at
compile-time.

17.4 When What Happens

Finally, it might be useful to clear up a possibly confusing issue. If read-macros are
invoked before ordinarymacros, how is it that macros can expand into expressions
which contain read-macros? For example, the macro:

(defmacro quotable ()
’(list ’able))

generates an expansion with a quote in it. Or does it? In fact, what happens is
that both quotes in the definition of this macro are expanded when the defmacro
expression is read, yielding

(defmacro quotable ()
(quote (list (quote able))))

Usually, there is no harm in acting as if macroexpansions could contain read-
macros, because the definition of a read-macro will not (or should not) change
between read-time and compile-time.
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Destructuring

Destructuring is a generalization of assignment. The operators setq and setf
do assignments to individual variables. Destructuring combines assignment with
access: instead of giving a single variable as the first argument, we give a pattern
of variables, which are each assigned the value occurring in the corresponding
position in some structure.

18.1 Destructuring on Lists

As of CLTL2, Common Lisp includes a new macro called destructuring-bind.
This macro was briefly introduced in Chapter 7. Here we consider it in more
detail. Suppose that lst is a list of three elements, and we want to bind x to the
first, y to the second, and z to the third. In raw CLTL1 Common Lisp, we would
have had to say:

(let ((x (first lst))
(y (second lst))
(z (third lst)))

...)

With the new macro we can say instead

(destructuring-bind (x y z) lst
...)

230
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which is not only shorter, but clearer as well. Readers grasp visual cues much
faster than textual ones. In the latter form we are shown the relationship between
x, y, and z; in the former, we have to infer it.

If such a simple case is made clearer by the use of destructuring, imagine the
improvement inmore complex ones. Thefirst argument to destructuring-bind
can be an arbitrarily complex tree. Imagine

(destructuring-bind ((first last) (month day year) . notes)
birthday

...)

written using let and the list access functions. Which raises another point:
destructuring makes it easier to write programs as well as easier to read them.

Destructuring did exist in CLTL1 CommonLisp. If the patterns in the examples
above look familiar, it’s because they have the same form as macro parameter lists.
In fact, destructuring-bind is the code used to take apart macro argument
lists, now sold separately. You can put anything in the pattern that you would put
in a macro parameter list, with one unimportant exception (the &environment
keyword).

Establishing bindings en masse is an attractive idea. The following sections
describe several variations upon this theme.

18.2 Other Structures

There is no reason to limit destructuring to lists. Any complex object is a candidate
for it. This section shows how to write macros like destructuring-bind for
other kinds of objects.

The natural next step is to handle sequences generally. Figure 18.1 contains a
macro called dbind, which resembles destructuring-bind, but works for any
kind of sequence. The second argument can be a list, a vector, or any combination
thereof:

> (dbind (a b c) #(1 2 3)
(list a b c))

(1 2 3)
> (dbind (a (b c) d) ’( 1 #(2 3) 4)

(list a b c d))
(1 2 3 4)
> (dbind (a (b . c) &rest d) ’(1 "fribble" 2 3 4)

(list a b c d))
(1 #\f "ribble" (2 3 4))
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(defmacro dbind (pat seq &body body)
(let ((gseq (gensym)))
‘(let ((,gseq ,seq))

,(dbind-ex (destruc pat gseq #’atom) body))))

(defun destruc (pat seq &optional (atom? #’atom) (n 0))
(if (null pat)

nil
(let ((rest (cond ((funcall atom? pat) pat)

((eq (car pat) ’&rest) (cadr pat))
((eq (car pat) ’&body) (cadr pat))
(t nil))))

(if rest
‘((,rest (subseq ,seq ,n)))
(let ((p (car pat))

(rec (destruc (cdr pat) seq atom? (1+ n))))
(if (funcall atom? p)

(cons ‘(,p (elt ,seq ,n))
rec)

(let ((var (gensym)))
(cons (cons ‘(,var (elt ,seq ,n))

(destruc p var atom?))
rec))))))))

(defun dbind-ex (binds body)
(if (null binds)

‘(progn ,@body)
‘(let ,(mapcar #’(lambda (b)

(if (consp (car b))
(car b)
b))

binds)
,(dbind-ex (mapcan #’(lambda (b)

(if (consp (car b))
(cdr b)))

binds)
body))))

Figure 18.1: General sequence destructuring operator.
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The #( read-macro is for representing vectors, and #\ for representing characters.
Since "abc" = #(#\a #\b #\c), the first element of "fribble" is the character
#\f. For the sake of simplicity, dbind supports only the &rest and &body
keywords.

Compared to most of the macros seen so far, dbind is big. It’s worth studying
the implementation of this macro, not only to understand how it works, but also
because it embodies a general lesson about Lisp programming. As section 3.4
mentioned, Lisp programs may intentionally be written in a way that will make
them easy to test. In most code, we have to balance this desire against the need
for speed. Fortunately, as Section 7.8 explained, speed is not so important in
expander code. When writing code that generates macroexpansions, we can make
life easier for ourselves. The expansion of dbind is generated by two functions,
destruc and dbind-ex. Perhaps they both could be combined into one function
which would do everything in a single pass. But why bother? As two separate
functions, they will be easier to test. Why trade this advantage for speed we don’t
need?

The first function, destruc, traverses the pattern and associates each variable
with the location of the corresponding object at runtime:

> (destruc ’(a b c) ’seq #’atom)
((A (ELT SEQ 0)) (B (ELT SEQ 1)) (C (ELT SEQ 2)))

The optional third argument is the predicate used to distinguish pattern structure
from pattern content.

To make access more efficient, a new variable (a gensym) will be bound to
each subsequence:

> (destruc ’(a (b . c) &rest d) ’seq)
((A (ELT SEQ 0))
((#:G2 (ELT SEQ 1)) (B (ELT #:G2 0)) (C (SUBSEQ #:G2 1)))
(D (SUBSEQ SEQ 2)))

The output of destruc is sent to dbind-ex, which generates the bulk of the
macroexpansion. It translates the tree produced by destruc into a nested series
of lets:

> (dbind-ex (destruc ’(a (b . c) &rest d) ’seq) ’(body))
(LET ((A (ELT SEQ 0))

(#:G4 (ELT SEQ 1))
(D (SUBSEQ SEQ 2)))

(LET ((B (ELT #:G4 0))
(C (SUBSEQ #:G4 1)))

(PROGN BODY)))
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(defmacro with-matrix (pats ar &body body)
(let ((gar (gensym)))
‘(let ((,gar ,ar))

(let ,(let ((row -1))
(mapcan
#’(lambda (pat)

(incf row)
(setq col -1)
(mapcar #’(lambda (p)

‘(,p (aref ,gar
,row
,(incf col))))

pat))
pats))

,@body))))

(defmacro with-array (pat ar &body body)
(let ((gar (gensym)))
‘(let ((,gar ,ar))

(let ,(mapcar #’(lambda (p)
‘(,(car p) (aref ,gar ,@(cdr p))))

pat)
,@body))))

Figure 18.2: Destructuring on arrays.

Note that dbind, like destructuring-bind, assumes that it will find all the
list structure it is looking for. Left-over variables are not simply bound to nil, as
with multiple-value-bind. If the sequence given at runtime does not have all
the expected elements, destructuring operators generate an error:

> (dbind (a b c) (list 1 2))
>>Error: 2 is not a valid index for the sequence (1 2)

What other objects have internal structure? There are arrays generally, which
differ fromvectors in havingmore than one dimension. If we define a destructuring
macro for arrays, how do we represent the pattern? For two-dimensional arrays,
it is still practical to use a list. Figure 18.2 contains a macro, with-matrix, for
destructuring on two-dimensional arrays.
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(defmacro with-struct ((name . fields) struct &body body)
(let ((gs (gensym)))
‘(let ((,gs ,struct))

(let ,(mapcar #’(lambda (f)
‘(,f (,(symb name f) ,gs)))

fields)
,@body))))

Figure 18.3: Destructuring on structures.

> (setq ar (make-array ’(3 3)))
#<Simple-Array T (3 3) C2D39E>
> (for (r 0 2)

(for (c 0 2)
(setf (aref ar r c) (+ (* r 10) c))))

NIL
> (with-matrix ((a b c)

(d e f)
(g h i)) ar

(list a b c d e f g h i))
(0 1 2 10 11 12 20 21 22)

For large arrays or those with dimension 3 or higher, we want a different kind
of approach. We are not likely to want to bind variables to each element of a large
array. It will be more practical to make the pattern a sparse representation of the
array—containing variables for only a few elements, plus coordinates to identify
them. The second macro in Figure 18.2 is built on this principle. Here we use it
to get the diagonal of our previous array:

> (with-array ((a 0 0) (d 1 1) (i 2 2)) ar
(values a d i))

0
11
22

With this new macro we have begun to move away from patterns whose
elements must occur in a fixed order. We can make a similar sort of macro to bind
variables to fields in structures built by defstruct. Such a macro is defined in
Figure 18.3. The first argument in the pattern is taken to be the prefix associated
with the structure, and the rest are field names. To build access calls, this macro
uses symb (page 58).
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> (defstruct visitor name title firm)
VISITOR
> (setq theo (make-visitor :name "Theodebert"

:title ’king
:firm ’franks))

#S(VISITOR NAME "Theodebert" TITLE KING FIRM FRANKS)
> (with-struct (visitor- name firm title) theo

(list name firm title))
("Theodebert" FRANKS KING)

18.3 Reference

CLOS brings with it a macro for destructuring on instances. Suppose tree is a
class with three slots, species, age, and height, and that my-tree is an instance
of tree. Within

(with-slots (species age height) my-tree
...)

we can refer to the slots of my-tree as if they were ordinary variables. Within the
body of the with-slots, the symbol height refers to the height slot. It is not
simply bound to the value stored there, but refers to the slot, so that if we write:

(setq height 72)

then the height slot of my-treewill be given the value 72. This macro works by
defining height as a symbol-macro (Section 7.11)which expands into a slot refer-
ence. In fact, it was to support macros like with-slots that symbol-macrolet
was added to Common Lisp.

Whether or not with-slots is really a destructuring macro, it has the same
role pragmatically as destructuring-bind. As conventional destructuring is
to call-by-value, this new kind is to call-by-name. Whatever we call it, it looks to
be useful. What other macros can we define on the same principle?

We can create a call-by-name version of any destructuringmacro by making it
expand into a symbol-macrolet rather than a let. Figure 18.4 shows a version
of dbindmodified to behave like with-slots. We can use with-places as we
do dbind:

> (with-places (a b c) #(1 2 3)
(list a b c))

(1 2 3)
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(defmacro with-places (pat seq &body body)
(let ((gseq (gensym)))
‘(let ((,gseq ,seq))

,(wplac-ex (destruc pat gseq #’atom) body))))

(defun wplac-ex (binds body)
(if (null binds)

‘(progn ,@body)
‘(symbol-macrolet ,(mapcar #’(lambda (b)

(if (consp (car b))
(car b)
b))

binds)
,(wplac-ex (mapcan #’(lambda (b)

(if (consp (car b))
(cdr b)))

binds)
body))))

Figure 18.4: Reference destructuring on sequences.

But the new macro also gives us the option to setf positions in sequences, as we
do slots in with-slots:

> (let ((lst ’(1 (2 3) 4)))
(with-places (a (b . c) d) lst

(setf a ’uno)
(setf c ’(tre)))

lst)
(UNO (2 TRE) 4)

As in a with-slots, the variables now refer to the corresponding locations in the
structure. There is one important difference, however: you must use setf rather
than setq to set these pseudo-variables. The with-slots macro must invoke
a code-walker (page 273) to transform setqs into setfs within its body. Here,
writing a code-walker would be a lot of code for a small refinement.

If with-places is more general than dbind, why not just use it all the time?
While dbind associates a variable with a value, with-places associates it with
a set of instructions for finding a value. Every reference requires a lookup. Where
dbind would bind c to the value of (elt x 2), with-places will make c a
symbol-macro that expands into (elt x 2). So if c is evaluated n times in the
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body, that will entail n calls to elt. Unless you actually want to setf the variables
created by destructuring, dbind will be faster.

The definition of with-places is only slightly changed from that of dbind
(Figure 18.1). Within wplac-ex (formerly dbind-ex) the let has become
a symbol-macrolet. By similar alterations, we could make a call-by-name
version of any normal destructuring macro.

18.4 Matching

As destructuring is a generalization of assignment, pattern-matching is a gener-
alization of destructuring. The term “pattern-matching” has many senses. In this
context, it means comparing two structures, possibly containing variables, to see
if there is some way of assigning values to the variables which makes the two
equal. For example, if ?x and ?y are variables, then the two lists

(p ?x ?y c ?x)
(p a b c a)

match when ?x = a and ?y = b. And the lists

(p ?x b ?y a)
(p ?y b c a)

match when ?x = ?y = c.
Suppose a programworks by exchangingmessages with some outside source.

To respond to a message, the program has to tell what kind of message it is, and
also to extract its specific content. With a matching operator we can combine the
two steps.

To be able to write such an operator we have to invent some way of distin-
guishing variables. We can’t just say that all symbols are variables, because we
will want symbols to occur as arguments within patterns. Here we will say that
a pattern variable is a symbol beginning with a question mark. If it becomes in-
convenient, this convention could be changed simply by redefining the predicate
var?.

Figure 18.5 contains a pattern-matching function similar to ones that appear
in several introductions to Lisp. We give match two lists, and if they can be made◦
to match, we will get back a list showing how:

> (match ’(p a b c a) ’(p ?x ?y c ?x))
((?Y . B) (?X . A))
T
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(defun match (x y &optional binds)
(acond2
((or (eql x y) (eql x ’_) (eql y ’_)) (values binds t))
((binding x binds) (match it y binds))
((binding y binds) (match x it binds))
((varsym? x) (values (cons (cons x y) binds) t))
((varsym? y) (values (cons (cons y x) binds) t))
((and (consp x) (consp y) (match (car x) (car y) binds))
(match (cdr x) (cdr y) it))

(t (values nil nil))))

(defun varsym? (x)
(and (symbolp x) (eq (char (symbol-name x) 0) #\?)))

(defun binding (x binds)
(labels ((recbind (x binds)

(aif (assoc x binds)
(or (recbind (cdr it) binds)

it))))
(let ((b (recbind x binds)))
(values (cdr b) b))))

Figure 18.5: Matching function.

> (match ’(p ?x b ?y a) ’(p ?y b c a))
((?Y . C) (?X . ?Y))
T
> (match ’(a b c) ’(a a a))
NIL
NIL

As match compares its arguments element by element, it builds up assignments
of values to variables, called bindings, in the parameter binds. If the match is
successful, match returns the bindings generated, otherwise it returns nil. Since
not all successful matches generate any bindings, match, like gethash, returns a
second value to indicate whether the match succeeded or failed:

> (match ’(p ?x) ’(p ?x))
NIL
T
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(defmacro if-match (pat seq then &optional else)
‘(aif2 (match ’,pat ,seq)

(let ,(mapcar #’(lambda (v)
‘(,v (binding ’,v it)))

(vars-in then #’atom))
,then)

,else))

(defun vars-in (expr &optional (atom? #’atom))
(if (funcall atom? expr)

(if (var? expr) (list expr))
(union (vars-in (car expr) atom?)

(vars-in (cdr expr) atom?))))

(defun var? (x)
(and (symbolp x) (eq (char (symbol-name x) 0) #\?)))

Figure 18.6: Slow matching operator.

When match returns nil and t as above, it indicates a successful match which
yielded no bindings.

Like Prolog, match treats (underscore) as a wild-card. It matches everything,
and has no effect on the bindings:

> (match ’(a ?x b) ’(_ 1 _))
((?X . 1))
T

Given match, it is easy to write a pattern-matching version of dbind. Fig-
ure 18.6 contains a macro called if-match. Like dbind, its first two arguments
are a pattern and a sequence, and it establishes bindings by comparing the pattern
with the sequence. However, instead of a body it has two more arguments: a then
clause to be evaluated, with new bindings, if the match succeeds; and an else
clause to be evaluated if the match fails. Here is a simple function which uses
if-match:

(defun abab (seq)
(if-match (?x ?y ?x ?y) seq

(values ?x ?y)
nil))

If thematch succeeds, it will establish values for?x and ?y, whichwill be returned:
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> (abab ’(hi ho hi ho))
HI
HO

The function vars-in returns all the pattern variables in an expression. It
calls var? to test if something is a variable. At the moment, var? is identical to
varsym? (Figure 18.5), which is used to detect variables in binding lists. We have
two distinct functions in case we want to use different representations for the two
kinds of variables.

As defined in Figure 18.6, if-match is short, but not very efficient. It does
too much work at runtime. We traverse both sequences at runtime, even though
the first is known at compile-time. Worse still, during the process of matching, we
cons up lists to hold the variable bindings. If we take advantage of information
known at compile-time, we can write a version of if-match which performs no
unnecessary comparisons, and doesn’t cons at all.

If one of the sequences is known at compile-time, and only that one contains
variables, then we can go about things differently. In a call to match, either
argument could contain variables. By restricting variables to the first argument
of if-match, we make it possible to tell at compile-time which variables will
be involved in the match. Then instead of creating lists of variable bindings, we
could keep the values of variables in the variables themselves.

The new version of if-match appears in Figure 18.7 and 18.8. When we can
predict what code would be evaluated at runtime, we can simply generate it at
compile-time. Here, instead of expanding into a call to match, we generate code
which performs just the right comparisons.

If we are going to use the variable ?x to contain the binding of ?x, how do we
represent a variable for which no binding has yet been established by the match?
Here we will indicate that a pattern variable is unbound by binding it to a gensym.
So if-match begins by generating code which will bind all the variables in the
pattern to gensyms. In this case, instead of expanding into a with-gensyms, it’s
safe to make the gensyms once at compile-time and insert them directly into the
expansion.

The rest of the expansion is generated by pat-match. This macro takes
the same arguments as if-match; the only difference is that it establishes no
new bindings for pattern variables. In some situations this is an advantage, and
Chapter 19 will use pat-match as an operator in its own right.

In the new matching operator, the distinction between pattern content and
pattern structure will be defined by the function simple?. If we want to be able
to use quoted literals in patterns, the destructuring code (and vars-in) have to be
told not to go inside lists whose first element is quote. With the new matching
operator, we will be able to use lists as pattern elements, simply by quoting them.
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(defmacro if-match (pat seq then &optional else)
‘(let ,(mapcar #’(lambda (v) ‘(,v ’,(gensym)))

(vars-in pat #’simple?))
(pat-match ,pat ,seq ,then ,else)))

(defmacro pat-match (pat seq then else)
(if (simple? pat)

(match1 ‘((,pat ,seq)) then else)
(with-gensyms (gseq gelse)

‘(labels ((,gelse () ,else))
,(gen-match (cons (list gseq seq)

(destruc pat gseq #’simple?))
then
‘(,gelse))))))

(defun simple? (x) (or (atom x) (eq (car x) ’quote)))

(defun gen-match (refs then else)
(if (null refs)

then
(let ((then (gen-match (cdr refs) then else)))

(if (simple? (caar refs))
(match1 refs then else)
(gen-match (car refs) then else)))))

Figure 18.7: Fast matching operator.

Like dbind, pat-match calls destruc to get a list of the calls that will
take apart its argument at runtime. This list is passed on to gen-match, which
recursively generates matching code for nested patterns, and thence to match1,
which generates match code for each leaf of the pattern tree.

Most of the code which will appear in the expansion of an if-match comes
from match1, which is shown in Figure 18.8. This function considers four cases.
If the pattern argument is a gensym, then it is one of the invisible variables created
by destruc to hold sublists, and all we need to do at runtime is test that it has the
right length. If the pattern element is a wildcard ( ), no code need be generated.
If the pattern element is a variable, match1 generates code to match it against,
or set it to, the corresponding part of the sequence given at runtime. Otherwise,
the pattern element is taken to be a literal value, and match1 generates code to
compare it with the corresponding part of the sequence.
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(defun match1 (refs then else)
(dbind ((pat expr) . rest) refs
(cond ((gensym? pat)

‘(let ((,pat ,expr))
(if (and (typep ,pat ’sequence)

,(length-test pat rest))
,then
,else)))

((eq pat ’_) then)
((var? pat)
(let ((ge (gensym)))
‘(let ((,ge ,expr))

(if (or (gensym? ,pat) (equal ,pat ,ge))
(let ((,pat ,ge)) ,then)
,else))))

(t ‘(if (equal ,pat ,expr) ,then ,else)))))

(defun gensym? (s)
(and (symbolp s) (not (symbol-package s))))

(defun length-test (pat rest)
(let ((fin (caadar (last rest))))
(if (or (consp fin) (eq fin ’elt))

‘(= (length ,pat) ,(length rest))
‘(> (length ,pat) ,(- (length rest) 2)))))

Figure 18.8: Fast matching operator (continued).

Let’s look at examples of how some parts of the expansion are generated.
Suppose we begin with

(if-match (?x ’a) seq
(print ?x)
nil)

The pattern will be passed to destruc, with some gensym (call it g for legibility)
to represent the sequence:

(destruc ’(?x ’a) ’g #’simple?)

yielding:
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((?x (elt g 0)) ((quote a) (elt g 1)))

On the front of this list we cons (g seq):

((g seq) (?x (elt g 0)) ((quote a) (elt g 1)))

and send thewhole thing to gen-match. Like the naive implementation of length
(page 22), gen-match first recurses all the way to the end of the list, and then
builds its return value on the way back up. When it has run out of elements,
gen-match returns its then argument, which will be ?x. On the way back up the
recursion, this return value will be passed as the then argument to match1. Now
we will have a call like:

(match1 ’(((quote a) (elt g 1))) ’(print ?x) ’⟨else function⟩)

yielding:

(if (equal (quote a) (elt g 1))
(print ?x)
⟨else function⟩)

This will in turn become the then argument to another call to match1, the value
of which will become the then argument of the last call to match1. The full
expansion of this if-match is shown in Figure 18.9.

In this expansion gensyms are used in two completely unrelated ways. The
variables used to hold parts of the tree at runtime have gensymed names, in order
to avoid capture. And the variable ?x is initially bound to a gensym, to indicate
that it hasn’t yet been assigned a value by matching.◦

In the new if-match, the pattern elements are now evaluated instead of being
implicitly quoted. This means that Lisp variables can be used in patterns, as well◦
as quoted expressions:

> (let ((n 3))
(if-match (?x n ’n ’(a b)) ’(1 3 n (a b))

?x))
1

Two further improvements appear because the new version calls destruc (Fig-
ure 18.1). The pattern can now contain &rest or &body keywords (match doesn’t
bother with those). And because destruc uses the generic sequence operators
elt and subseq, the new if-matchwill work for any kind of sequence. If abab
is defined with the new version, it can be used also on vectors and strings:
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(if-match (?x ’a) seq
(print ?x))

expands into:

(let ((?x ’#:g1))
(labels ((#:g3 nil nil))
(let ((#:g2 seq))
(if (and (typep #:g2 ’sequence)

(= (length #:g2) 2))
(let ((#:g5 (elt #:g2 0)))
(if (or (gensym? x) (equal ?x #:g5))

(let ((?x #:g5))
(if (equal ’a (elt #:g2 1))

(print ?x)
(#:g3)))

(#:g3)))
(#:g3)))))

Figure 18.9: Expansion of an if-match.

> (abab "abab")
#\a
#\b
> (abab #(1 2 1 2))
1
2

In fact, patterns can be as complex as patterns to dbind:

> (if-match (?x (1 . ?y) . ?x) ’((a b) #(1 2 3) a b)
(values ?x ?y))

(A B)
#(2 3)

Notice that, in the second return value, the elements of the vector are displayed.
To have vectors printed this way, set *print-array* to t.

In this chapter we are beginning to cross the line into a new kind of pro-
gramming. We began with simple macros for destructuring. In the final version
of if-match we have something that looks more like its own language. The
remaining chapters describe a whole class of programswhich operate on the same
philosophy.
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A Query Compiler

Some of the macros defined in the preceding chapter were large ones. To generate
its expansion, if-match needed all the code in Figures 18.7 and 18.8, plus
destruc from Figure 18.1. Macros of this size lead naturally to our last topic,
embedded languages. If small macros are extensions to Lisp, large macros define
sub-languages within it—possibly with their own syntax or control structure. We
saw the beginning of this in if-match, which had its own distinct representation
for variables.

A language implemented within Lisp is called an embedded language. Like
“utility,” the term is not a precisely defined one; if-match probably still counts
as a utility, but it is getting close to the borderline.

An embedded language is not a like a language implemented by a traditional
compiler or interpreter. It is implemented within some existing language, usually
by transformation. There need be no barrier between the base language and the
extension: it should be possible to intermingle the two freely. For the implementor,
this can mean a huge saving of effort. You can embed just what you need, and for
the rest, use the base language.

Transformation, in Lisp, suggests macros. To some extent, you could imple-
ment embedded languages with preprocessors. But preprocessors usually operate
only on text, while macros take advantage of a unique property of Lisp: between
the reader and the compiler, your Lisp program is represented as lists of Lisp
objects. Transformations done at this stage can be much smarter.

The best-known example of an embedded language is CLOS, the CommonLisp
Object System. If youwanted tomake an object-orientedversion of a conventional
language, you would have to write a new compiler. Not so in Lisp. Tuning the
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compiler will make CLOS run faster, but in principle the compiler doesn’t have to
be changed at all. The whole thing can be written in Lisp.

The remaining chapters give examples of embedded languages. This chapter
describes how to embed in Lisp a program to answer queries on a database. (You
will notice in this program a certain family resemblance to if-match.) The first
sections describe how to write a system which interprets queries. This program is
then reimplemented as a query compiler—in essence, as one big macro—making
it both more efficient and better integrated with Lisp.

19.1 The Database

For our present purposes, the format of the database doesn’t matter very much.
Here, for the sake of convenience, we will store information in lists. For example,
we will represent the fact that Joshua Reynolds was an English painter who lived
from 1723 to 1792 by:

(painter reynolds joshua english)
(dates reynolds 1723 1792)

There is no canonical way of reducing information to lists. We could just as well
have used one big list:

(painter reynolds joshua 1723 1792 english)

It is up to the user to decide how to organize database entries. The only restriction
is that the entries (facts) will be indexed under their first element (the predicate).
Within those bounds, any consistent form will do, although some forms might
make for faster queries than others.

Any database system needs at least two operations: one for modifying the
database, and one for examining it. The code shown in Figure 19.1 provides these
operations in a basic form. A database is represented as a hash-table filled with
lists of facts, hashed according to their predicate.

Although the database functions defined in Figure 19.1 support multiple
databases, they all default to operations on *default-db*. As with packages
in Common Lisp, programs which don’t need multiple databases need not even
mention them. In this chapter all the examples will just use the *default-db*.

We initialize the system by calling clear-db, which empties the current
database. We can look up facts with a given predicate with db-query, and insert
new facts into a database entry with db-push. As explained in Section 12.1, a
macro which expands into an invertible reference will itself be invertible. Since
db-query is defined this way, we can simply push new facts onto the db-query
of their predicates. In Common Lisp, hash-table entries are initialized to nil
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(defun make-db (&optional (size 100))
(make-hash-table :size size))

(defvar *default-db* (make-db))

(defun clear-db (&optional (db *default-db*))
(clrhash db))

(defmacro db-query (key &optional (db ’*default-db*))
‘(gethash ,key ,db))

(defun db-push (key val &optional (db *default-db*))
(push val (db-query key db)))

(defmacro fact (pred &rest args)
‘(progn (db-push ’,pred ’,args)

’,args))

Figure 19.1: Basic database functions.

unless specified otherwise, so any key initially has an empty list associated with
it. Finally, the macro fact adds a new fact to the database.

> (fact painter reynolds joshua english)
(REYNOLDS JOSHUA ENGLISH)
> (fact painter canale antonio venetian)
(CANALE ANTONIO VENETIAN)
> (db-query ’painter)
((CANALE ANTONIO VENETIAN)
(REYNOLDS JOSHUA ENGLISH))

T

The t returned as the second value by db-query appears because db-query
expands into a gethash, which returns as its second value a flag to distinguish
between finding no entry and finding an entry whose value is nil.

19.2 Pattern-Matching Queries

Calling db-query is not a very flexible way of looking at the contents of the
database. Usually the user wants to ask questions which depend on more than
just the first element of a fact. A query language is a language for expressing
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⟨query⟩ : (⟨symbol⟩ ⟨argument⟩*)
: (not ⟨query⟩)
: (and ⟨query⟩*)
: (or ⟨query⟩*)

⟨argument⟩ : ?⟨symbol⟩
: ⟨symbol⟩
: ⟨number⟩

Figure 19.2: Syntax of queries.

more complicated questions. In a typical query language, the user can ask for all
the values which satisfy some combination of restrictions—for example, the last
names of all the painters born in 1697.

Our programwill provide a declarative query language. In a declarative query
language, the user specifies the constraints which answers must satisfy, and leaves
it to the system to figure out how to generate them. This way of expressing queries
is close to the form people use in everyday conversation. With our program, we
will be able to express the sample query by asking for all the x such that there
is a fact of the form (painter x ...), and a fact of the form (dates x 1697
...). We will be able to refer to all the painters born in 1697 by writing:

(and (painter ?x ?y ?z)
(dates ?x 1697 ?w))

Aswell as accepting simple queries consisting of a predicate and some arguments,
our programwill be able to answer arbitrarily complex queries joined together by
logical operators like and and or. The syntax of the query language is shown in
Figure 19.2.

Since facts are indexed under their predicates, variables cannot appear in the
predicate position. If you were willing to give up the benefits of indexing, you
could get around this restriction by always using the same predicate, and making
the first argument the de facto predicate.

Like many such systems, this program has a skeptic’s notion of truth: some
facts are known, and everything else is false. The not operator succeeds if the
fact in question is not present in the database. To a degree, you could represent
explicit falsity by theWayne’s World method:

(edible motor-oil not)

However, the not operator wouldn’t treat these facts differently from any others.
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In programming languages there is a fundamental distinction between inter-
preted and compiled programs. In this chapter we examine the same question
with respect to queries. A query interpreter accepts a query and uses it to generate
answers from the database. A query compiler accepts a query and generates a
programwhich, when run, yields the same result. The following sections describe
a query interpreter and then a query compiler.

19.3 A Query Interpreter

To implement a declarative query language we will use the pattern-matching
utilities defined in Section 18.4. The functions shown in Figure 19.3 interpret
queries of the form shown in Figure 19.2. The central function in this code is
interpret-query, which recursively works through the structure of a complex
query, generating bindings in the process. The evaluation of complex queries
proceeds left-to-right, as in Common Lisp itself.

When the recursion gets down to patterns for facts, interpret-query calls
lookup. This is where the pattern-matching occurs. The function lookup takes
a pattern consisting of a predicate and a list of arguments, and returns a list of all
the bindings which make the pattern match some fact in the database. It gets all
the database entries for the predicate, and calls match (page 239) to compare each
of them against the pattern. Each successful match returns a list of bindings, and
lookup in turn returns a list of all these lists.

> (lookup ’painter ’(?x ?y english))
(((?Y . JOSHUA) (?X . REYNOLDS)))

These results are then filtered or combined depending on the surrounding
logical operators. The final result is returned as a list of sets of bindings. Given
the assertions shown in Figure 19.4, here is the example from earlier in this
chapter:

> (interpret-query ’(and (painter ?x ?y ?z)
(dates ?x 1697 ?w)))

(((?W . 1768) (?Z . VENETIAN) (?Y . ANTONIO) (?X . CANALE))
((?W . 1772) (?Z . ENGLISH) (?Y . WILLIAM) (?X . HOGARTH)))

As a general rule, queries can be combined and nested without restriction. In a
few cases there are subtle restrictions on the syntax of queries, but these are best
dealt with after looking at some examples of how this code is used.

The macro with-answer provides a clean way of using the query interpreter
within Lisp programs. It takes as its first argument any legal query; the rest
of the arguments are treated as a body of code. A with-answer expands into
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(defmacro with-answer (query &body body)
(let ((binds (gensym)))
‘(dolist (,binds (interpret-query ’,query))

(let ,(mapcar #’(lambda (v)
‘(,v (binding ’,v ,binds)))

(vars-in query #’atom))
,@body))))

(defun interpret-query (expr &optional binds)
(case (car expr)
(and (interpret-and (reverse (cdr expr)) binds))
(or (interpret-or (cdr expr) binds))
(not (interpret-not (cadr expr) binds))
(t (lookup (car expr) (cdr expr) binds))))

(defun interpret-and (clauses binds)
(if (null clauses)

(list binds)
(mapcan #’(lambda (b)

(interpret-query (car clauses) b))
(interpret-and (cdr clauses) binds))))

(defun interpret-or (clauses binds)
(mapcan #’(lambda (c)

(interpret-query c binds))
clauses))

(defun interpret-not (clause binds)
(if (interpret-query clause binds)

nil
(list binds)))

(defun lookup (pred args &optional binds)
(mapcan #’(lambda (x)

(aif2 (match x args binds) (list it)))
(db-query pred)))

Figure 19.3: Query interpreter.
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(clear-db)
(fact painter hogarth william english)
(fact painter canale antonio venetian)
(fact painter reynolds joshua english)
(fact dates hogarth 1697 1772)
(fact dates canale 1697 1768)
(fact dates reynolds 1723 1792)

Figure 19.4: Assertion of sample facts.

code which collects all the sets of bindings generated by the query, then iterates
through the body with the variables in the query bound as specified by each set of
bindings. Variables which appear in the query of a with-answer can (usually)
be used within its body. When the query is successful but contains no variables,
with-answer evaluates the body of code just once.

With the database as defined in Figure 19.4, Figure 19.5 shows some sample
queries, accompanied by English translations. Because pattern-matching is done
with match, it is possible to use the underscore as a wild-card in patterns.

To keep these examples short, the code within the bodies of the queries does
nothing more than print some result. In general, the body of a with-answer can
consist of any Lisp expressions.

19.4 Restrictions on Binding

There are some restrictions on which variables will be bound by a query. For
example, why should the query

(not (painter ?x ?y ?z))

assign any bindings to ?x and ?y at all? There are an infinite number of combi-
nations of ?x and ?y which are not the name of some painter. Thus we add the
following restriction: the not operator will filter out bindings which are already
generated, as in

(and (painter ?x ?y ?z) (not (dates ?x 1772 ?d)))

but you cannot expect it to generate bindings all by itself. We have to generate
sets of bindings by looking for painters before we can screen out the ones not born
in 1772. If we had put the clauses in the reverse order:

(and (not (dates ?x 1772 ?d)) (painter ?x ?y ?z)) ; wrong
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The first name and nationality of every painter called Hogarth.

> (with-answer (painter hogarth ?x ?y)
(princ (list ?x ?y)))

(WILLIAM ENGLISH)
NIL

The last name of every painter born in 1697. (Our original example.)

> (with-answer (and (painter ?x _ _)
(dates ?x 1697 _))

(princ (list ?x)))
(CANALE)(HOGARTH)
NIL

The last name and year of birth of everyone who died in 1772 or 1792.

> (with-answer (or (dates ?x ?y 1772)
(dates ?x ?y 1792))

(princ (list ?x ?y)))
(HOGARTH 1697)(REYNOLDS 1723)
NIL

The last name of every English painter not born the same year as a Venetian
one.

> (with-answer (and (painter ?x _ english)
(dates ?x ?b _)
(not (and (painter ?x2 _ venetian)

(dates ?x2 ?b _))))
(princ ?x))

REYNOLDS
NIL

Figure 19.5: The query interpreter in use.

then we would get nil as the result if there were any painters born in 1772. Even
in the first example, we shouldn’t expect to be able to use the value of ?d within
the body of a with-answer expression.

Also, expressions of the form (or q1 . . . qn) are only guaranteed to generate
real bindings for variables which appear in all of the qi. If a with-answer
contained the query

(or (painter ?x ?y ?z) (dates ?x ?b ?d))
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you could expect to use the binding of ?x, because no matter which of the
subqueries succeeds, it will generate a binding for ?x. But neither ?y nor ?b is
guaranteed to get a binding from the query, though one or the other will. Pattern
variables not bound by the query will be nil for that iteration.◦

19.5 A Query Compiler

The code in Figure 19.3 does what we want, but inefficiently. It analyzes the
structure of the query at runtime, though it is known at compile-time. And it
conses up lists to hold variable bindings, when we could use the variables to hold
their own values. Both of these problems can be solved by defining with-answer
in a different way.

Figure 19.6 defines a new version of with-answer. The new version con-
tinues a trend which began with avg (page 182), and continued with if-match
(page 242): it does at compile-time much of the work that the old version did
at runtime. The code in Figure 19.6 bears a superficial resemblance to that in
Figure 19.3, but none of these functions are called at runtime. Instead of gen-
erating bindings, they generate code, which becomes part of the expansion of
with-answer. At runtime this code will generate all the bindings which satisfy
the query according to the current state of the database.

In effect, this program is one big macro. Figure 19.7 shows the macroexpan-
sion of a with-answer. Most of the work is done by pat-match (page 242),
which is itself a macro. Now the only new functions needed at runtime are the
basic database functions shown in Figure 19.1.

When with-answer is called from the toplevel, query compilation has little
advantage. The code representing the query is generated, evaluated, then thrown
away. But when a with-answer expression appears within a Lisp program, the
code representing the query becomes part of its macroexpansion. So when the
containing program is compiled, the code for all the queries will be compiled
inline in the process.

Although the primary advantage of the new approach is speed, it also makes
with-answer expressions better integrated with the code in which they appear.
This shows in two specific improvements. First, the arguments within the query
now get evaluated, so we can say:

> (setq my-favorite-year 1723)
1723
> (with-answer (dates ?x my-favorite-year ?d)

(format t "~A was born in my favorite year.~%" ?x))
REYNOLDS was born in my favorite year.
NIL
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(defmacro with-answer (query &body body)
‘(with-gensyms ,(vars-in query #’simple?)

,(compile-query query ‘(progn ,@body))))

(defun compile-query (q body)
(case (car q)
(and (compile-and (cdr q) body))
(or (compile-or (cdr q) body))
(not (compile-not (cadr q) body))
(lisp ‘(if ,(cadr q) ,body))
(t (compile-simple q body))))

(defun compile-simple (q body)
(let ((fact (gensym)))
‘(dolist (,fact (db-query ’,(car q)))

(pat-match ,(cdr q) ,fact ,body nil))))

(defun compile-and (clauses body)
(if (null clauses)

body
(compile-query (car clauses)

(compile-and (cdr clauses) body))))

(defun compile-or (clauses body)
(if (null clauses)

nil
(let ((gbod (gensym))

(vars (vars-in body #’simple?)))
‘(labels ((,gbod ,vars ,body))

,@(mapcar #’(lambda (cl)
(compile-query cl ‘(,gbod ,@vars)))

clauses)))))

(defun compile-not (q body)
(let ((tag (gensym)))
‘(if (block ,tag

,(compile-query q ‘(return-from ,tag nil))
t)

,body)))

Figure 19.6: Query compiler.
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(with-answer (painter ?x ?y ?z)
(format t "~A ~A is a painter.~%" ?y ?x))

is expanded by the query interpreter into:

(dolist (#:g1 (interpret-query ’(painter ?x ?y ?z)))
(let ((?x (binding ’?x #:g1))

(?y (binding ’?y #:g1))
(?z (binding ’?z #:g1)))

(format t "~A ~A is a painter.~%" ?y ?x)))

and by the query compiler into:

(with-gensyms (?x ?y ?z)
(dolist (#:g1 (db-query ’painter))
(pat-match (?x ?y ?z) #:g1

(progn
(format t "~A ~A is a painter.~%" ?y ?x))

nil)))

Figure 19.7: Two expansions of the same query.

This could have been done in the query interpreter, but only at the cost of calling
eval explicitly. And even then, it wouldn’t have been possible to refer to lexical
variables in the query arguments.

Since arguments within queries are now evaluated, any literal argument (e.g.
english) that doesn’t evaluate to itself should now be quoted. (See Figure 19.8.)

The second advantage of the new approach is that it is now much easier to
include normal Lisp expressions within queries. The query compiler adds a lisp
operator, which may be followed by any Lisp expression. Like the not operator,
it cannot generate bindings by itself, but it will screen out bindings for which
the expression returns nil. The lisp operator is useful for getting at built-in
predicates like >:

> (with-answer (and (dates ?x ?b ?d)
(lisp (> (- ?d ?b) 70)))

(format t "~A lived over 70 years.~%" ?x))
CANALE lived over 70 years.
HOGARTH lived over 70 years.
NIL

A well-implemented embedded language can have a seamless interface with the
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The first name and nationality of every painter called Hogarth.

> (with-answer (painter ’hogarth ?x ?y)
(princ (list ?x ?y)))

(WILLIAM ENGLISH)
NIL

The last name of every English painter not born in the same year as a Venetian
painter.

> (with-answer (and (painter ?x _ ’english)
(dates ?x ?b _)
(not (and (painter ?x2 _ ’venetian)

(dates ?x2 ?b _))))
(princ ?x))

REYNOLDS
NIL

The last name and year of death of every painter who died between 1770 and
1800 exclusive.

> (with-answer (and (painter ?x _ _)
(dates ?x _ ?d)
(lisp (< 1770 ?d 1800)))

(princ (list ?x ?d)))
(REYNOLDS 1792)(HOGARTH 1772)
NIL

Figure 19.8: The query compiler in use.

base language on both sides.
Aside from these two additions—the evaluation of arguments and the new

lisp operator—the query language supported by the query compiler is identical
to that supported by the interpreter. Figure 19.8 shows examples of the results
generated by the query compiler with the database as defined in Figure 19.4.

Section 17.2 gave two reasons why it is better to compile an expression
than feed it, as a list, to eval. The former is faster, and allows the expression
to be evaluated in the surrounding lexical context. The advantages of query
compilation are exactly analogous. Work that used to be done at runtime is now
done at compile-time. And because the queries are compiled as a piece with the
surrounding Lisp code, they can take advantage of the lexical context.
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Continuations

A continuation is a program frozen in action: a single functional object containing
the state of a computation. When the object is evaluated, the stored computation
is restarted where it left off. In solving certain types of problems it can be
a great help to be able to save the state of a program and restart it later. In
multiprocessing, for example, a continuation conveniently represents a suspended
process. In nondeterministic search programs, a continuation can represent a node
in the search tree.

Continuations can be difficult to understand. This chapter approaches the
topic in two steps. The first part of the chapter looks at the use of continuations in
Scheme, which has built-in support for them. Once the behavior of continuations◦
has been explained, the second part shows how to usemacros to build continuations
in Common Lisp programs. Chapters 21–24 will all make use of the macros
defined here.

20.1 Scheme Continuations

One of the principal ways in which Scheme differs from Common Lisp is its
explicit support for continuations. This section shows how continuations work in
Scheme. (Figure 20.1 lists some other differences between Scheme and Common
Lisp.)

A continuation is a function representing the future of a computation. When-
ever an expression is evaluated, something is waiting for the value it will return.
For example, in

258
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1. Scheme makes no distinction between what Common Lisp calls the
symbol-value and symbol-function of a symbol. In Scheme, a vari-
able has a single value, which can be either a function or some other sort of
object. Thus there is no need for sharp-quote or funcall in Scheme. The
Common Lisp:

(let ((f #’(lambda (x) (1+ x))))
(funcall f 2))

would be in Scheme:

(let ((f (lambda (x) (1+ x))))
(f 2))

2. Since Scheme has only one name-space, it doesn’t need separate operators
(e.g. defun and setq) for assignments in each. Instead it has define, which
is roughly equivalent to defvar, and set!, which takes the place of setq.
Global variables must be created with define before they can be set with
set!.

3. In Scheme, named functions are usually defined with define, which takes
the place of defun as well as defvar. The Common Lisp:

(defun foo (x) (1+ x))

has two possible Scheme translations:

(define foo (lambda (x) (1+ x)))
(define (foo x) (1+ x))

4. In Common Lisp, the arguments to a function are evaluated left-to-right. In
Scheme, the order of evaluation is deliberately unspecified. (And implementors
delight in surprising those who forget this.)

5. Instead of t and nil, Scheme has #t and #f. The empty list, (), is true in
some implementations and false in others.

6. The default clause in cond and case expressions has the key else in
Scheme, instead of t as in Common Lisp.

7. Several built-in operators have different names: consp is pair?, null is
null?, mapcar is (almost) map, and so on. Ordinarily these should be obvious
from the context.

Figure 20.1: Some differences between Scheme and Common Lisp.
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(/ (- x 1) 2)

when (- x 1) is evaluated, the outer / expression is waiting for the value, and
something else is waiting for its value, and so on and so on, all the way back to
the toplevel—where print is waiting.

We can think of the continuation at any given time as a function of one
argument. If the previous expression were typed into the toplevel, then when the
subexpression (- x 1) was evaluated, the continuation would be:

(lambda (val) (/ val 2))

That is, the remainder of the computation could be duplicated by calling this
function on the return value. If instead the expression occurred in the following
context

(define (f1 w)
(let ((y (f2 w)))
(if (integer? y) (list ’a y) ’b)))

(define (f2 x)
(/ (- x 1) 2))

and f1 were called from the toplevel, then when (- x 1) was evaluated, the
continuation would be equivalent to

(lambda (val)
(let ((y (/ val 2)))
(if (integer? y) (list ’a y) ’b)))

In Scheme, continuations are first-class objects, just like functions. You can
ask Scheme for the current continuation, and it will make you a function of one
argument representing the future of the computation. You can save this object for
as long as you like, and when you call it, it will restart the computation that was
taking place when it was created.

Continuations can be understood as a generalization of closures. A closure is
a function plus pointers to the lexical variables visible at the time it was created.
A continuation is a function plus a pointer to the whole stack pending at the time
it was created. When a continuation is evaluated, it returns a value using its own
copy of the stack, ignoring the current one. If a continuation is created at T1 and
evaluated at T2, it will be evaluated with the stack that was pending at T1.

Scheme programs have access to the current continuation via the built-in
operator call-with-current-continuation (call/cc for short). When a
program calls call/cc on a function of one argument:
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(call-with-current-continuation
(lambda (cc)
...))

the function will be passed another function representing the current continuation.
By storing the value of cc somewhere, we save the state of the computation at the
point of the call/cc.

In this example, we append together a list whose last element is the value
returned by a call/cc expression:

> (define frozen)
FROZEN
> (append ’(the call/cc returned)

(list (call-with-current-continuation
(lambda (cc)
(set! frozen cc)
’a))))

(THE CALL/CC RETURNED A)

The call/cc returns a, but first saves the continuation in the global variable
frozen.

Calling frozen will restart the old computation at the point of the call/cc.
Whatever value we pass to frozen will be returned as the value of the call/cc:

> (frozen ’again)
(THE CALL/CC RETURNED AGAIN)

Continuations aren’t used up by being evaluated. They can be called repeatedly,
just like any other functional object:

> (frozen ’thrice)
(THE CALL/CC RETURNED THRICE)

When we call a continuation within some other computation, we see more
clearly what it means to return back up the old stack:

> (+ 1 (frozen ’safely))
(THE CALL/CC RETURNED SAFELY)

Here, the pending + is ignored when frozen is called. The latter returns up
the stack that was pending at the time it was first created: through list, then
append, to the toplevel. If frozen returned a value like a normal function call,
the expression above would have yielded an error when + tried to add 1 to a list.

Continuations do not get unique copies of the stack. They may share variables
with other continuations, or with the computation currently in progress. In this
example, two continuations share the same stack:
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> (define froz1)
FROZ1
> (define froz2)
FROZ2
> (let ((x 0))

(call-with-current-continuation
(lambda (cc)
(set! froz1 cc)
(set! froz2 cc)))

(set! x (1+ x))
x)

1

so calls to either will return successive integers:

> (froz2 ())
2
> (froz1 ())
3

Since the value of the call/cc expression will be discarded, it doesn’t matter
what argument we give to froz1 and froz2.

Now that we can store the state of a computation, what do we do with it?
Chapters 21–24 are devoted to applications which use continuations. Here we
will consider a simple example which conveys well the flavor of programming
with saved states: we have a set of trees, and we want to generate lists containing
one element from each tree, until we get a combination satisfying some condition.

Trees can be represented as nested lists. Page 70 described a way to represent
one kind of tree as a list. Here we use another, which allows interior nodes to have
(atomic) values, and any number of children. In this representation, an interior
node becomes a list; its car contains the value stored at the node, and its cdr
contains the representations of the node’s children. For example, the two trees
shown in Figure 20.2 can be represented:

(define t1 ’(a (b (d h)) (c e (f i) g)))
(define t2 ’(1 (2 (3 6 7) 4 5)))

Figure 20.3 contains functionswhich do depth-first traversals on such trees. In
a real program we would want to do something with the nodes as we encountered
them. Here we just print them. The function dft, given for comparison, does an
ordinary depth-first traversal:

> (dft t1)
ABDHCEFIG()
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Figure 20.2: Two Trees.

The function dft-node follows the same path through the tree, but deals out
nodes one at a time. When dft-node reaches a node, it follows the car of the
node, and pushes onto *saved* a continuation to explore the cdr.

> (dft-node t1)
A

Calling restart continues the traversal, by popping the most recently saved
continuation and calling it.

> (restart)
B

Eventually there will be no saved states left, a fact which restart signals by
returning done:

...
> (restart)
G
> (restart)
DONE

Finally, the function dft2 neatly packages up what we just did by hand:

> (dft2 t1)
ABDHCEFIG()
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(define (dft tree)
(cond ((null? tree) ())

((not (pair? tree)) (write tree))
(else (dft (car tree))

(dft (cdr tree)))))

(define *saved* ())

(define (dft-node tree)
(cond ((null? tree) (restart))

((not (pair? tree)) tree)
(else (call-with-current-continuation

(lambda (cc)
(set! *saved*

(cons (lambda ()
(cc (dft-node (cdr tree))))

*saved*))
(dft-node (car tree)))))))

(define (restart)
(if (null? *saved*)

’done
(let ((cont (car *saved*)))

(set! *saved* (cdr *saved*))
(cont))))

(define (dft2 tree)
(set! *saved* ())
(let ((node (dft-node tree)))
(cond ((eq? node ’done) ())

(else (write node)
(restart)))))

Figure 20.3: Tree traversal using continuations.

Notice that there is no explicit recursion or iteration in the definition of dft2: suc-
cessive nodes are printed because the continuations invoked by restart always
return back through the same cond clause in dft-node.

This kind of program works like a mine. It digs the initial shaft by calling
dft-node. So long as the value returned is not done, the code following the call
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to dft-node will call restart, which sends control back down the stack again.
This process continues until the return value signals that themine is empty. Instead
of printing this value, dft2 returns #f. Search with continuations represents a
novel way of thinking about programs: put the right code in the stack, and get the
result by repeatedly returning up through it.

If we only want to traverse one tree at a time, as in dft2, then there is no
reason to bother using this technique. The advantage of dft-node is that we can
have several instances of it going at once. Suppose we have two trees, and we
want to generate, in depth-first order, the cross-product of their elements.

> (set! *saved* ())
()
> (let ((node1 (dft-node t1)))

(if (eq? node1 ’done)
’done
(list node1 (dft-node t2))))

(A 1)
> (restart)
(A 2)
...
> (restart)
(B 1)
...

Using normal techniques, we would have had to take explicit steps to save our
place in the two trees. With continuations, the state of the two ongoing traversals
is maintained automatically. In a simple case like this one, saving our place in
the tree would not be so difficult. The trees are permanent data structures, so at
least we have some way of getting hold of “our place” in the tree. The great thing
about continuations is that they can just as easily save our place in the middle of
any computation, even if there are no permanent data structures associated with
it. The computation need not even have a finite number of states, so long as we
only want to restart a finite number of them.

As Chapter 24 will show, both of these considerations turn out to be important
in the implementation of Prolog. In Prolog programs, the “search trees” are not
real data structures, but are implicit in the way the program generates results. And
the trees are often infinite, in which case we cannot hope to search the whole of
one before searching the next; we have no choice but to save our place, one way
or another.
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20.2 Continuation-Passing Macros

Common Lisp doesn’t provide call/cc, but with a little extra effort we can do
the same things as we can in Scheme. This section shows how to use macros to
build continuations in Common Lisp programs. Scheme continuations gave us
two things:

1. The bindings of all variables at the time the continuation was made.

2. The state of the computation—what was going to happen from then on.

In a lexically scopedLisp, closures give us the first of these. It turns out that we can
also use closures to maintain the second, by storing the state of the computation
in variable bindings as well.

The macros shown in Figure 20.4 make it possible to do function calls while
preserving continuations. These macros replace the built-in Common Lisp forms
for defining functions, calling them, and returning values.

Functions which want to use continuations (or call functions which do) should
be defined with =defun instead of defun. The syntax of =defun is the same as◦
that of defun, but its effect is subtly different. Instead of defining just a function,
=defun defines a function and a macro which expands into a call to it. (Themacro
must be defined first, in case the function calls itself.) The function will have the
body that was passed to =defun, but will have an additional parameter, *cont*,
consed onto its parameter list. In the expansion of the macro, this function will
receive *cont* along with its other arguments. So

(=defun add1 (x) (=values (1+ x)))

macroexpands into

(progn (defmacro add1 (x)
‘(=add1 *cont* ,x))

(defun =add1 (*cont* x)
(=values (1+ x))))

When we call add1, we are actually calling not a function but a macro. The
macro expands into a function call,1 but with one extra parameter: *cont*. So
the current value of *cont* is always passed implicitly in a call to an operator
defined with =defun.

What is *cont* for? It will be bound to the current continuation. The
definition of =values shows how this continuation will be used. Any function
defined using =defun must return with =values, or call some other function

1Functions created by =defun are deliberately given interned names, to make it possible to trace
them. If tracing were never necessary, it would be safer to gensym the names.
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(setq *cont* #’identity)

(defmacro =lambda (parms &body body)
‘#’(lambda (*cont* ,@parms) ,@body))

(defmacro =defun (name parms &body body)
(let ((f (intern (concatenate ’string

"=" (symbol-name name)))))
‘(progn

(defmacro ,name ,parms
‘(,’,f *cont* ,,@parms))

(defun ,f (*cont* ,@parms) ,@body))))

(defmacro =bind (parms expr &body body)
‘(let ((*cont* #’(lambda ,parms ,@body))) ,expr))

(defmacro =values (&rest retvals)
‘(funcall *cont* ,@retvals))

(defmacro =funcall (fn &rest args)
‘(funcall ,fn *cont* ,@args))

(defmacro =apply (fn &rest args)
‘(apply ,fn *cont* ,@args))

Figure 20.4: Continuation-passing macros.

which does so. The syntax of =values is the same as that of the Common Lisp
form values. It can return multiple values if there is an =bind with the same
number of arguments waiting for them, but can’t return multiple values to the
toplevel. ◦

The parameter *cont* tells a function defined with =defun what to do with
its return value. When =values is macroexpanded it will capture *cont*, and
use it to simulate returning from the function. The expression

> (=values (1+ n))

expands into

(funcall *cont* (1+ n))
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At the toplevel, the value of *cont* is identity, which just returns whatever is
passed to it. When we call (add1 2) from the toplevel, the call gets macroex-
panded into the equivalent of

(funcall #’(lambda (*cont* n) (=values (1+ n))) *cont* 2)

The reference to *cont* will in this case get the global binding. The =values
expression will thus macroexpand into the equivalent of:

(funcall #’identity (1+ n))

which just adds 1 to n and returns the result.
In functions like add1, we go through all this trouble just to simulate what

Lisp function call and return do anyway:

> (=defun bar (x)
(=values (list ’a (add1 x))))

BAR
> (bar 5)
(A 6)

The point is, we have now brought function call and return under our own control,
and can do other things if we wish.

It is by manipulating *cont* that we will get the effect of continuations.
Although *cont* has a global value, this will rarely be the one used: *cont*will
nearly always be a parameter, captured by =values and the macros defined by
=defun. Within the body of add1, for example, *cont* is a parameter and not the
global variable. This distinction is important because these macros wouldn’twork
if *cont* were not a local variable. That’s why *cont* is given its initial value
in a setq instead of a defvar: the latter would also proclaim it to be special.

The third macro in Figure 20.4, =bind, is intended to be used in the same way
as multiple-value-bind. It takes a list of parameters, an expression, and a
body of code: the parameters are bound to the values returned by the expression,
and the code body is evaluated with those bindings. This macro should be used
whenever additional expressions have to be evaluated after calling a function
defined with =defun.

> (=defun message ()
(=values ’hello ’there))

MESSAGE
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> (=defun baz ()
(=bind (m n) (message)

(=values (list m n))))
BAZ
> (baz)
(HELLO THERE)

Notice that the expansion of an =bind creates a new variable called *cont*. The
body of baz macroexpands into:

(let ((*cont* #’(lambda (m n)
(=values (list m n)))))

(message))

which in turn becomes:

(let ((*cont* #’(lambda (m n)
(funcall *cont* (list m n)))))

(=message *cont*))

The new value of *cont* is the body of the =bind expression, so when message
“returns” by funcalling *cont*, the result will be to evaluate the body of code.
However (and this is the key point), within the body of the =bind:

#’(lambda (m n)
(funcall *cont* (list m n)))

the *cont* that was passed as an argument to =baz is still visible, so when the
body of code in turn evaluates an =values, it will be able to return to the original
calling function. The closures are knitted together: each binding of *cont* is a
closure containing the previous binding of *cont*, forming a chain which leads
all the way back up to the global value.

We can see the same phenomenon on a smaller scale here:

> (let ((f #’identity))
(let ((g #’(lambda (x) (funcall f (list ’a x)))))

#’(lambda (x) (funcall g (list ’b x)))))
#<Interpreted-Function BF6326>
> (funcall * 2)
(A (B 2))

This example creates a function which is a closure containing a reference to g,
which is itself a closure containing a reference to f. Similar chains of closures
were built by the network compiler on page 80.
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1. The parameter list of a function defined with =defun must consist solely
of parameter names.

2. Functions which make use of continuations, or call other functions which
do, must be defined with =lambda or =defun.

3. Such functions must terminate either by returning values with =values, or
by calling another function which obeys this restriction.

4. If an =bind, =values, =apply, or =funcall expression occurs in a seg-
ment of code, it must be a tail call. Any code to be evaluated after an =bind
should be put in its body. So if we want to have several =binds one after
another, they must be nested:

(=defun foo (x)
(=bind (y) (bar x)
(format t "Ho ")
(=bind (z) (baz x)
(format t "Hum.")
(=values x y z))))

Figure 20.5: Restrictions on continuation-passing macros.

The remaining macros, =apply and =funcall, are for use with functions
defined by =lambda. Note that “functions” defined with =defun, because they
are actually macros, cannot be given as arguments to apply or funcall. The
way around this problem is analogous to the trick mentioned on page 110. It is to
package up the call inside another =lambda:

> (=defun add1 (x)
(=values (1+ x)))

ADD1
> (let ((fn (=lambda (n) (add1 n))))

(=bind (y) (=funcall fn 9)
(format nil "9 + 1 = ~A" y)))

"9 + 1 = 10"

Figure 20.5 summarizes all the restrictions imposed by the continuation-
passing macros. Functions which neither save continuations, nor call other func-
tions which do, need not use these special macros. Built-in functions like list,
for example, are exempt.

Figure 20.6 contains the code from Figure 20.3, translated from Scheme into
Common Lisp, and using the continuation-passing macros instead of Scheme
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(defun dft (tree)
(cond ((null tree) nil)

((atom tree) (princ tree))
(t (dft (car tree))

(dft (cdr tree)))))

(setq *saved* nil)

(=defun dft-node (tree)
(cond ((null tree) (restart))

((atom tree) (=values tree))
(t (push #’(lambda () (dft-node (cdr tree)))

*saved*)
(dft-node (car tree)))))

(=defun restart ()
(if *saved*

(funcall (pop *saved*))
(=values ’done)))

(=defun dft2 (tree)
(setq *saved* nil)
(=bind (node) (dft-node tree)
(cond ((eq node ’done) (=values nil))

(t (princ node)
(restart)))))

Figure 20.6: Tree traversal using continuation-passing macros.

continuations. With the same example tree, dft2 works just as before:

> (setq t1 ’(a (b (d h)) (c e (f i) g))
t2 ’(1 (2 (3 6 7) 4 5)))

(1 (2 (3 6 7) 4 5))
> (dft2 t1)
ABDHCEFIG
NIL

Saving states of multiple traversals also works as in Scheme, though the example
becomes a bit longer:
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> (=bind (node1) (dft-node t1)
(if (eq node1 ’done)

’done
(=bind (node2) (dft-node t2)
(list node1 node2))))

(A 1)
> (restart)
(A 2)
...
> (restart)
(B 1)
...

By knitting together a chain of lexical closures, Common Lisp programs can
build their own continuations. Fortunately, the closures are knitted together by
the macros in the sweatshop of Figure 20.4, and the user can have the finished
garment without giving a thought to its origins.

Chapters 21–24 all rely on continuations in some way. These chapters will
show that continuations are an abstraction of unusual power. They may not be
overly fast, especially when implemented on top of the language as macros, but
the abstractions we can build upon them make certain programs much faster to
write, and there is a place for that kind of speed too.

20.3 Code-Walkers and CPS Conversion

The macros described in the previous section represent a compromise. They give
us the power of continuations, but only if we write our programs in a certain way.
Rule 4 in Figure 20.5 means that we always have to write

(=bind (x) (fn y)
(list ’a x))

rather than

(list ’a ; wrong
(=bind (x) (fn y) x))

A true call/cc imposes no such restrictions on the programmer. A call/cc can
grab the continuation at any point in a program of any shape. We could implement
an operator with the full power of call/cc, but it would be a lot more work. This
section outlines how it could be done.
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A Lisp program can be transformed into a form called “continuation-passing
style.” Programs which have undergone complete CPS conversion are impossible
to read, but one can grasp the spirit of this process by looking at code which has
been partially transformed. The following function to reverse lists: ◦

(defun rev (x)
(if (null x)

nil
(append (rev (cdr x)) (list (car x)))))

yields an equivalent continuation-passing version:

(defun rev2 (x)
(revc x #’identity))

(defun revc (x k)
(if (null x)

(funcall k nil)
(revc (cdr x)

#’(lambda (w)
(funcall k (append w (list (car x))))))))

In the continuation-passing style, functions get an additional parameter (herek)
whose value will be the continuation. The continuation is a closure representing
what should be done with the current value of the function. On the first recursion,
the continuation is identity; what should be done is that the function should
just return its current value. On the second recursion, the continuation will be
equivalent to:

#’(lambda (w)
(identity (append w (list (car x)))))

which says that what should be done is to append the car of the list to the current
value, and return it.

Once you can do CPS conversion, it is easy to write call/cc. In a program
which has undergone CPS conversion, the entire current continuation is always
present, and call/cc can be implemented as a simple macro which calls some
function with it as an argument.

To do CPS conversion we need a code-walker, a program that traverses the
trees representing the source code of a program. Writing a code-walker for
Common Lisp is a serious undertaking. To be useful, a code-walker has to do ◦
more than simply traverse expressions. It also has to know a fair amount about
what the expressions mean. A code-walker can’t just think in terms of symbols,



274 CONTINUATIONS

for example. A symbol could represent, among other things, itself, a function, a
variable, a block name, or a tag for go. The code-walker has to use the context to
distinguish one kind of symbol from another, and act accordingly.

Since writing a code-walker would be beyond the scope of this book, the
macros described in this chapter are the most practical alternative. The macros
in this chapter split the work of building continuations with the user. If the user
writes programs in something sufficiently close to CPS, the macros can do the
rest. That’s what rule 4 really amounts to: if everything following an =bind
expression is within its body, then between the value of *cont* and the code
in the body of the =bind, the program has enough information to construct the
current continuation.

The =bind macro is deliberately written to make this style of programming
feel natural. In practice the restrictions imposed by the continuation-passing
macros are bearable.
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Multiple Processes

The previous chapter showed how continuations allow a running program to get
hold of its own state, and store it away to be restarted later. This chapter deals
with a model of computation in which a computer runs not one single program,
but a collection of independent processes. The concept of a process corresponds
closely with our concept of the state of a program. By writing an additional layer
of macros on top of those in the previous chapter, we can embed multiprocessing
in Common Lisp programs.

21.1 The Process Abstraction

Multiple processes are a convenient way of expressing programs which must do
several things at once. A traditional processor executes one instruction at a time.
To say that multiple processes do more than one thing at once is not to say that
they somehow overcome this hardware limitation: what it means is that they allow
us to think at a new level of abstraction, in which we don’t have to specify exactly
what the computer is doing at any given time. Just as virtual memory allows us to
act as though the computer had more memory than it actually does, the notion of
a process allows us to act as if the computer could run more than one program at
a time.

The study of processes is traditionally in the domain of operating systems. But
the usefulness of processes as an abstraction is not limited to operating systems.
They are equally useful in other real-time applications, and in simulations.

Much of the work done on multiple processes has been devoted to avoiding
certain types of problems. Deadlock is one classic problem with multiple pro-

275
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cesses: two processes both stand waiting for the other to do something, like two
people who each refuse to cross a threshold before the other. Another problem is
the querywhich catches the system in an inconsistent state—say, a balance inquiry
which arrives while the system is transferring funds from one account to another.
This chapter deals only with the process abstraction itself; the code presented here
could be used to test algorithms for preventing deadlock or inconsistent states, but
it does not itself provide any protection against these problems.

The implementation in this chapter follows a rule implicit in all the programs
in this book: disturb Lisp as little as possible. In spirit, a program ought to be
as much as possible like a modification of the language, rather than a separate
application written in it. Making programs harmonize with Lisp makes them
more robust, like a machine whose parts fit together well. It also saves effort;
sometimes you can make Lisp do a surprising amount of your work for you.

The aim of this chapter is to make a language which supports multiple pro-
cesses. Our strategy will be to turn Lisp into such a language, by adding a few
new operators. The basic elements of our language will be as follows:

Functions will be defined with the =defun or =lambda macros from the
previous chapter.

Processes will be instantiated from function calls. There is no limit on the
number of active processes, or the number of processes instantiated from
any one function. Each process will have a priority, initially given as an
argument when it is created.

Wait expressions may occur within functions. A wait expression will take
a variable, a test expression, and a body of code. If a process encounters
a wait, the process will be suspended at that point until the test expression
returns true. Once the process restarts, the body of code will be evaluated,
with the variable bound to the value of the test expression. Test expressions
should not ordinarily have side-effects, because there are no guarantees
about when, or how often, they will be evaluated.

Schedulingwill be done by priority. Of all the processes able to restart, the
system will run the one with the highest priority.

The default process will run if no other process can. It is a read-eval-print
loop.

Creation and deletion of most objects will be possible on the fly. From run-
ning processes it will be possible to define new functions, and to instantiate
and kill processes.
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(defstruct proc pri state wait)

(proclaim ’(special *procs* *proc*))

(defvar *halt* (gensym))

(defvar *default-proc*
(make-proc :state #’(lambda (x)

(format t "~%>> ")
(princ (eval (read)))
(pick-process))))

(defmacro fork (expr pri)
‘(prog1 ’,expr

(push (make-proc
:state #’(lambda (,(gensym))

,expr
(pick-process))

:pri ,pri)
*procs*)))

(defmacro program (name args &body body)
‘(=defun ,name ,args

(setq *procs* nil)
,@body
(catch *halt* (loop (pick-process)))))

Figure 21.1: Process structure and instantiation.

Continuations make it possible to store the state of a Lisp program. Being able to
store several states at once is not very far from havingmultiple processes. Starting
with the macros defined in the previous chapter, we need less than 60 lines of code
to implement multiple processes.

21.2 Implementation

Figures 21.1 and 21.2 contain all the code needed to supportmultiple processes.
Figure 21.1 contains code for the basic data structures, the default process, initial-
ization, and instantiation of processes. Processes, or procs, have the following
structure:
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pri is the priority of the process, which should be a positive number.

state is a continuation representing the state of a suspended process. A process
is restarted by funcalling its state.

wait is usually a function which must return true in order for the process to be
restarted, but initially the wait of a newly created process is nil. A process
with a null wait can always be restarted.

The program uses three global variables: *procs*, the list of currently sus-
pended processes; *proc*, the process now running; and *default-proc*, the
default process.

The default process runs only when no other process can. It simulates the
Lisp toplevel. Within this loop, the user can halt the program, or type expressions
which enable suspended processes to restart. Notice that the default process calls
eval explicitly. This is one of the few situations in which it is legitimate to do so.
Generally it is not a good idea to call eval at runtime, for two reasons:

1. It’s inefficient: eval is handed a raw list, and either has to compile it on the
spot, or evaluate it in an interpreter. Either way is slower than compiling
the code beforehand, and just calling it.

2. It’s less powerful, because the expression is evaluated with no lexical con-
text. Among other things, this means that you can’t refer to ordinary
variables visible outside the expression being evaluated.

Usually, calling eval explicitly is like buying something in an airport gift-shop.
Having waited till the last moment, you have to pay high prices for a limited
selection of second-rate goods.

Cases like this are rare instances when neither of the two preceding arguments
applies. We couldn’t possibly have compiled the expressions beforehand. We are
just now reading them; there is no beforehand. Likewise, the expression can’t
refer to surrounding lexical variables, because expressions typed at the toplevel
are in the null lexical environment. In fact, the definition of this function simply
reflects its English description: it reads and evaluates what the user types.

The macro fork instantiates a process from a function call. Functions are
defined as usual with =defun:

(=defun foo (x)
(format t "Foo was called with ~A.~%" x)
(=values (1+ x)))

Now when we call fork with a function call and a priority number:



21.2 IMPLEMENTATION 279

(fork (foo 2) 25)

a new process is pushed onto *procs*. The new process has a priority of 25, a
proc-wait of nil, since it hasn’t been started yet, and a proc-state consisting
of a call to foo with the argument 2.

The macro program allows us to create a group of processes and run them
together. The definition:

(program two-foos (a b)
(fork (foo a) 99)
(fork (foo b) 99))

macroexpands into the two fork expressions, sandwiched between code which
clears out the suspended processes, and other code which repeatedly chooses a
process to run. Outside this loop, the macro establishes a tag to which control can
be thrown to end the program. As a gensym, this tag will not conflict with tags
established by user code. A group of processes defined as a program returns no
particular value, and is only meant to be called from the toplevel.

After the processes are instantiated, the process scheduling code takes over.
This code is shown in Figure 21.2. The function pick-process selects and runs
the highest priority process which is able to restart. Selecting this process is the
job of most-urgent-process. A suspended process is eligible to run if it has
no wait function, or its wait function returns true. Among eligible processes,
the one with the highest priority is chosen. The winning process and the value
returned by its wait function (if there is one) are returned to pick-process.
There will always be some winning process, because the default process always
wants to run.

The remainder of the code in Figure 21.2 defines the operators used to switch
control between processes. The standard wait expression is wait, as used in the
function pedestrian in Figure 21.3. In this example, the process waits until
there is something in the list *open-doors*, then prints a message:

> (ped)
>> (push ’door2 *open-doors*)
Entering DOOR2
>> (halt)
NIL

A wait is similar in spirit to an =bind (page 267), and carries the same
restriction that it must be the last thing to be evaluated. Anything we want to
happen after the waitmust be put in its body. Thus, if we want to have a process
wait several times, the wait expressions must be nested. By asserting facts aimed
at one another, processes can cooperate in reaching some goal, as in Figure 21.4.
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(defun pick-process ()
(multiple-value-bind (p val) (most-urgent-process)
(setq *proc* p

*procs* (delete p *procs*))
(funcall (proc-state p) val)))

(defun most-urgent-process ()
(let ((proc1 *default-proc*) (max -1) (val1 t))
(dolist (p *procs*)
(let ((pri (proc-pri p)))

(if (> pri max)
(let ((val (or (not (proc-wait p))

(funcall (proc-wait p)))))
(when val
(setq proc1 p

max pri
val1 val))))))

(values proc1 val1)))

(defun arbitrator (test cont)
(setf (proc-state *proc*) cont

(proc-wait *proc*) test)
(push *proc* *procs*)
(pick-process))

(defmacro wait (parm test &body body)
‘(arbitrator #’(lambda () ,test)

#’(lambda (,parm) ,@body)))

(defmacro yield (&body body)
‘(arbitrator nil #’(lambda (,(gensym)) ,@body)))

(defun setpri (n) (setf (proc-pri *proc*) n))

(defun halt (&optional val) (throw *halt* val))

(defun kill (&optional obj &rest args)
(if obj

(setq *procs* (apply #’delete obj *procs* args))
(pick-process)))

Figure 21.2: Process scheduling.
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(defvar *open-doors* nil)

(=defun pedestrian ()
(wait d (car *open-doors*)
(format t "Entering ~A~%" d)))

(program ped ()
(fork (pedestrian) 1))

Figure 21.3: One process with one wait.

Processes instantiated from visitor and host, if given the same door, will
exchange control via messages on a blackboard:

> (ballet)
Approach DOOR2. Open DOOR2. Enter DOOR2. Close DOOR2.
Approach DOOR1. Open DOOR1. Enter DOOR1. Close DOOR1.
>>

There is another, simpler type of wait expression: yield, whose only purpose
is to give other higher-priority processes a chance to run. A process might want to
yield after executing a setpri expression, which resets the priority of the current
process. As with a wait, any code to be executed after a yield must be put
within its body.

The program in Figure 21.5 illustrates how the two operators work together.
Initially, the barbarians have two aims: to capture Rome and to plunder it. Captur-
ing the city has (slightly) higher priority, and so will run first. However, after the
city has been reduced, the priority of the capture process decreases to 1. Then
there is a vote, and plunder, as the highest-priority process, starts running.

> (barbarians)
Liberating ROME.
Nationalizing ROME.
Refinancing ROME.
Rebuilding ROME.
>>

Only after the barbarians have looted Rome’s palaces and ransomed the patricians,
does the capture process resume, and the barbarians turn to fortifying their own
position.

Underlying wait expressions is the more general arbitrator. This function
stores the current process, and then calls pick-process to start some process
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(defvar *bboard* nil)

(defun claim (&rest f) (push f *bboard*))

(defun unclaim (&rest f) (pull f *bboard* :test #’equal))

(defun check (&rest f) (find f *bboard* :test #’equal))

(=defun visitor (door)
(format t "Approach ~A. " door)
(claim ’knock door)
(wait d (check ’open door)
(format t "Enter ~A. " door)
(unclaim ’knock door)
(claim ’inside door)))

(=defun host (door)
(wait k (check ’knock door)
(format t "Open ~A. " door)
(claim ’open door)
(wait g (check ’inside door)
(format t "Close ~A.~%" door)
(unclaim ’open door))))

(program ballet ()
(fork (visitor ’door1) 1)
(fork (host ’door1) 1)
(fork (visitor ’door2) 1)
(fork (host ’door2) 1))

Figure 21.4: Synchronization with a blackboard.

(perhaps the same one) running again. It will be given two arguments: a test
function and a continuation. The former will be stored as the proc-wait of
the process being suspended, and called later to determine if it can be restarted.
The latter will become the proc-state, and calling it will restart the suspended
process.

The macros wait and yield build this continuation function simply by wrap-
ping their bodies in lambda-expressions. For example,

(wait d (car *bboard*) (=values d))
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(=defun capture (city)
(take city)
(setpri 1)
(yield
(fortify city)))

(=defun plunder (city)
(loot city)
(ransom city))

(defun take (c) (format t "Liberating ~A.~%" c))
(defun fortify (c) (format t "Rebuilding ~A.~%" c))
(defun loot (c) (format t "Nationalizing ~A.~%" c))
(defun ransom (c) (format t "Refinancing ~A.~%" c))

(program barbarians ()
(fork (capture ’rome) 100)
(fork (plunder ’rome) 98))

Figure 21.5: Effect of changing priorities.

expands into:

(arbitrator #’(lambda () (car *bboard*))
#’(lambda (d) (=values d)))

If the code obeys the restrictions listed in Figure 20.5, making a closure of the
wait’s body will preserve the whole current continuation. With its =values
expanded the second argument becomes:

#’(lambda (d) (funcall *cont* d))

Since the closure contains a reference to *cont*, the suspended process with
this wait function will have a handle on where it was headed at the time it was
suspended.

The halt operator stops the whole program, by throwing control back to the
tag established by the expansion of program. It takes an optional argument,
which will be returned as the value of the program. Because the default process is
always willing to run, the only way programs end is by explicit halts. It doesn’t
matter what code follows a halt, since it won’t be evaluated.

Individual processes can be killed by calling kill. If given no arguments,
this operator kills the current process. In this case, kill is like a wait expression
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which neglects to store the current process. If kill is given arguments, they
become the arguments to a delete on the list of processes. In the current code,
there is not much one can say in a kill expression, because processes do not have
many properties to refer to. However, a more elaborate system would associate
more information with processes—time stamps, owners, and so on. The default
process can’t be killed, because it isn’t kept in the list *procs*.

21.3 The Less-than-Rapid Prototype

Processes simulated with continuations are not going to be nearly as efficient as
real operating system processes. What’s the use, then, of programs like the one
in this chapter?

Such programs are useful in the same way that sketches are. In exploratory
programming or rapid prototyping, the program is not an end in itself so much
as a vehicle for working out one’s ideas. In many other fields, something which
serves this purpose is called a sketch. An architect could, in principle, design an
entire building in his head. However, most architects seem to think better with
pencils in their hands: the design of a building is usually worked out in a series
of preparatory sketches.

Rapid prototyping is sketching software. Like an architect’s first sketches,
software prototypes tend to be drawnwith a few sweeping strokes. Considerations
of cost and efficiency are ignored in an initial push to develop an idea to the full.
The result, at this stage, is likely to be an unbuildable building or a hopelessly
inefficient piece of software. But the sketches are valuable all the same, because

1. They convey information briefly.

2. They offer a chance to experiment.

The program described in this chapter is, like those in succeeding chapters, a
sketch. It suggests the outlines of multiprocessing in a few, broad strokes. And
though it would not be efficient enough for use in production software, it could
be quite useful for experimenting with other aspects of multiple processes, like
scheduling algorithms.

Chapters 22–24 present other applications of continuations. None of them is
efficient enough for use in production software. Because Lisp and rapid proto-
typing evolved together, Lisp includes a lot of features specifically intended for
prototypes: inefficient but convenient features like property lists, keyword param-
eters, and, for that matter, lists. Continuations probably belong in this category.
They save more state than a program is likely to need. So our continuation-based
implementation of Prolog, for example, is a good way to understand the language,
but an inefficient way to implement it.
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This book is concerned more with the kinds of abstractions one can build
in Lisp than with efficiency issues. It’s important to realize, though, that Lisp
is a language for writing production software as well as a language for writing
prototypes. If Lisp has a reputation for slowness, it is largely because so many
programmers stop with the prototype. It is easy to write fast programs in Lisp.
Unfortunately, it is very easy to write slow ones. The initial version of a Lisp
program can be like a diamond: small, clear, and very expensive. There may be
a great temptation to leave it that way.

In other languages, once you succeed in the arduous task of getting your
program to work, it may already be acceptably efficient. If you tile a floor
with tiles the size of your thumbnail, you don’t waste many. Someone used to
developing software on this principle may find it difficult to overcome the idea
that when a program works, it’s finished. “In Lisp you can write programs in no
time at all,” he may think, “but boy, are they slow.” In fact, neither is the case.
You can get fast programs, but you have to work for them. In this respect, using
Lisp is like living in a rich country instead of a poor one: it may seem unfortunate
that one has to work to stay thin, but surely this is better than working to stay
alive, and being thin as a matter of course.

In less abstract languages, you work for functionality. In Lisp you work for
speed. Fortunately, working for speed is easier: most programs only have a few
critical sections in which speed matters.
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Nondeterminism

Programming languages save us from being swamped by a mass of detail. Lisp is
a good language because it handles so many details itself, enabling programmers
to make the most of their limited tolerance for complexity. This chapter describes
how macros can make Lisp handle another important class of details: the details
of transforming a nondeterministic algorithm into a deterministic one.

This chapter is divided into five parts. The first explains what nondeterminism
is. The second describes a Scheme implementation of nondeterministic choose and
fail which uses continuations. The third part presents Common Lisp versions of
choose and fail which build upon the continuation-passing macros of Chapter 20.
The fourth part shows how the cut operator can be understood independently
of Prolog. The final part suggests refinements of the original nondeterministic
operators.

The nondeterministic choice operators defined in this chapter will be used to
write an ATN compiler in Chapter 23 and an embedded Prolog in Chapter 24.

22.1 The Concept

A nondeterministic algorithm is one which relies on a certain sort of supernatural
foresight. Why talk about such algorithmswhenwe don’t have access to computers
with supernatural powers? Because a nondeterministic algorithmcan be simulated
by a deterministic one. For purely functional programs—that is, those with
no side-effects—simulating nondeterminism is particularly straightforward. In
purely functional programs, nondeterminism can be implemented by search with
backtracking.

286
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This chapter shows how to simulate nondeterminism in functional programs.
If we have a simulator for nondeterminism, we can expect it to produce results
whenever a truly nondeterministic machine would. In many cases, writing a
program which depends on supernatural insight to solve a problem is easier than
writing one which doesn’t, so such a simulator would be a good thing to have.

In this section we will define the class of powers that nondeterminism allows
us; the next section demonstrates their utility in some sample programs. The
examples in these first two sections are written in Scheme. (Some differences
between Scheme and Common Lisp are summarized on page 259.)

A nondeterministic algorithm differs from a deterministic one because it can
use the two special operators choose and fail. Choose is a function which takes a
finite set and returns one element. To explain how choose chooses, we must first
introduce the concept of a computational future.

Here we will represent choose as a function choose which takes a list and
returns one element. For each element, there is a set of futures the computation
could have if that element were chosen. In the following expression

(let ((x (choose ’(1 2 3))))
(if (odd? x)

(+ x 1)
x))

there are three possible futures for the computation when it reaches the point of
the choose:

1. If choose returns 1, the computation will go through the then-clause of the
if, and will return 2.

2. If choose returns 2, the computation will go through the else-clause of the
if, and will return 2.

3. If choose returns 3, the computation will go through the then-clause of the
if, and will return 4.

In this case, we know exactly what the future of the computation will be as soon
as we see what choose returns. In the general case, each choice is associated with
a set of possible futures, because within some futures there could be additional
chooses. For example, with

(let ((x (choose ’(2 3))))
(if (odd? x)

(choose ’(a b))
x))
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there are two sets of futures at the time of the first choose:

1. If choose returns 2, the computation will go through the else-clause of the
if, and will return 2.

2. If choose returns 3, the computation will go through the then-clause of
the if. At this point, the path of the computation splits into two possible
futures, one in which a is returned, and one in which b is.

The first set has one future and the second set has two, so the computation has
three possible futures.

The point to remember is, if choose is given a choice of several alternatives,
each one is associated with a set of possible futures. Which choice will it return?
We can assume that choose works as follows:

1. It will only return a choice for which some future does not contain a call to
fail.

2. A choose over zero alternatives is equivalent to a fail.

So, for example, in

(let ((x (choose ’(1 2))))
(if (odd? x)

(fail)
x))

each of the possible choices has exactly one future. Since the future for a choice
of 1 contains a call to fail, only 2 can be chosen. So the expression as a whole
is deterministic: it always returns 2.

However, the following expression is not deterministic:

(let ((x (choose ’(1 2))))
(if (odd? x)

(let ((y (choose ’(a b))))
(if (eq? y ’a)

(fail)
y))

x))

At the first choose, there are two possible futures for a choice of 1, and one for a
choice of 2. Within the former, though, the future is really deterministic, because
a choice of a would result in a call to fail. So the expression as a whole could
return either b or 2.

Finally, there is only one possible value for the expression
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(let ((x (choose ’(1 2))))
(if (odd? x)

(choose ’())
x))

because if 1 is chosen, the future goes through a choose with no choices. This
example is thus equivalent to the last but one.

It may not be clear yet from the preceding examples, but we have just got
ourselves an abstraction of astounding power. In nondeterministic algorithms we
are allowed to say “choose an element such that nothing we do later will result in a
call to fail.” For example, this is a perfectly legitimate nondeterministic algorithm
for discovering whether you have a known ancestor called Igor:

Function Ig(n)
if name(n) = ‘Igor’
then return n

else if parents(n)
then return Ig(choose(parents(n)))

else fail

The fail operator is used to influence the value returned by choose. If we
ever encounter a fail, choosewould have chosen incorrectly. By definition choose
guesses correctly. So if we want to guarantee that the computation will never
pursue a certain path, all we need do is put a fail somewhere in it, and that path
will never be followed. Thus, as it works recursively through generations of
ancestors, the function Ig is able to choose at each step a path which leads to an
Igor—to guess whether to follow the mother’s or father’s line.

It is as if a program can specify that choose pick some element from a set of
alternatives, use the value returned by choose for as long as it wants, and then
retroactively decide, by using fail as a veto, what it wants choose to have picked.
And, presto, it turns out that that’s just what choose did return. Hence the model
in which choose has foresight.

In reality choose cannot have supernatural powers. Any implementation of
choosemust simulate correct guessing by backtrackingwhen it discoversmistakes,
like a rat finding its way through a maze. But all this backtracking can be done
beneath the surface. Once you have some form of choose and fail, you get to write
algorithms like the one above, as if it really were possible to guess what ancestor
to follow. By using choose it is possible to write an algorithm to search some
problem space just by writing an algorithm to traverse it.
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(define (descent n1 n2)
(if (eq? n1 n2)

(list n2)
(let ((p (try-paths (kids n1) n2)))

(if p (cons n1 p) #f))))

(define (try-paths ns n2)
(if (null? ns)

#f
(or (descent (car ns) n2)

(try-paths (cdr ns) n2))))

Figure 22.1: Deterministic tree search.

(define (descent n1 n2)
(cond ((eq? n1 n2) (list n2))

((null? (kids n1)) (fail))
(else (cons n1 (descent (choose (kids n1)) n2)))))

Figure 22.2: Nondeterministic tree search.

22.2 Search

Many classic problems can be formulated as search problems, and for such prob-
lems nondeterminism often turns out to be a useful abstraction. Suppose nodes
is bound to a list of nodes in a tree, and (kids n) is a function which returns
the descendants of node n, or #f if there are none. We want to write a function
(descent n1 n2) which returns a list of nodes on some path from n1 to its de-
scendant n2, if there is one. Figure 22.1 shows a deterministic version of this
function.

Nondeterminism allows the programmer to ignore the details of finding a path.
It’s possible simply to tell choose to find a node n such that there is a path from
n to our destination. Using nondeterminism we can write the simpler version of
descent shown in Figure 22.2.

The version shown in Figure 22.2 does not explicitly search for a node on the
right path. It is written on the assumption that choose has chosen an n with the
desired properties. If we are used to looking at deterministic programs, we may
not perceive that choose has to work as if it could guess what n would make it
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(define (two-numbers)
(list (choose ’(0 1 2 3 4 5))

(choose ’(0 1 2 3 4 5))))

(define (parlor-trick sum)
(let ((nums (two-numbers)))
(if (= (apply + nums) sum)

‘(the sum of ,@nums)
(fail))))

Figure 22.3: Choice in a subroutine.

through the computation which follows without failing.
Perhaps a more convincing example of the power of choose is its ability to

guess what will happen even in calling functions. Figure 22.3 contains a pair
of functions to guess two numbers which sum to a number given by the caller.
The first function, two-numbers, nondeterministically chooses two numbers and
returns them in a list. When we call parlor-trick, it calls two-numbers for a
list of two integers. Note that, in making its choice, two-numbers doesn’t have
access to the number entered by the user.

If the two numbers guessed by choose don’t sum to the number entered by the
user, the computation fails. We can rely on choose having avoided computational
paths which fail, if there are any which don’t. Thus we can assume that if the
caller gives a number in the right range, choosewill have guessed right, as indeed
it does:1

> (parlor-trick 7)
(THE SUM OF 2 5)

In simple searches, the built-in Common Lisp function find-if would do
just as well. Where is the advantage of nondeterministic choice? Why not just
iterate through the list of alternatives in search of the element with the desired
properties? The crucial difference between choose and conventional iteration is
that its extent with respect to fails is unbounded. Nondeterministic choose can
see arbitrarily far into the future; if something is going to happen at any point in
the future which would have invalidated some guess choose might make, we can
assume that choose knows to avoid guessing it. As we saw in parlor-trick,

1Since the order of argument evaluation is unspecified in Scheme (as opposed to Common Lisp,
which specifies left-to-right), this call might also return (THE SUM OF 5 2).
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the fail operator works even after we return from the function in which the choose
occurs.

This kind of failure happens in the search done by Prolog, for example.
Nondeterminism is useful in Prolog because one of the central features of this
language is its ability to return answers to a query one at a time. By following
this course instead of returning all the valid answers at once, Prolog can handle
recursive rules which would otherwise yield infinitely large sets of answers.

The initial reaction to descentmay be like the initial reaction to a merge sort:
where does the work get done? As in a merge sort, the work gets done implicitly,
but it does get done. Section 22.3 describes an implementation of choose in which
all the code examples presented so far are real running programs.

These examples show the value of nondeterminism as an abstraction. The best
programming language abstractions save not just typing, but thought. In automata
theory, some proofs are difficult even to conceive of without relying on nonde-
terminism. A language which allows nondeterminism may give programmers a
similar advantage.

22.3 Scheme Implementation

This section explains how to use continuations to simulate nondeterminism. Fig-
ure 22.4 contains Scheme implementations of choose and fail. Beneath the surface,◦
choose and fail simulate nondeterminism by backtracking. A backtracking
search program must somehow store enough information to pursue other alterna-
tives if the chosen one fails. This information is stored in the formof continuations
on the global list *paths*.

The function choose is passed a list of alternatives in choices. If choices is
empty, then choose calls fail, which sends the computation back to the previous
choose. If choices is (first . rest), choose first pushes onto *paths* a
continuation in which choose is called on rest, then returns first.

The function fail is simpler: it just pops a continuation off *paths* and
calls it. If there aren’t any saved paths left, then fail returns the symbol @.
However, it won’t do simply to return it as a function ordinarily returns values, or
it will be returned as the value of the most recent choose. What we really want to
do is return @ right to the toplevel. We do this by binding cc to the continuation
where fail is defined, which presumably is the toplevel. By calling cc, fail
can return straight there.

The implementation in Figure 22.4 treats *paths* as a stack, always fail-
ing back to the most recent choice point. This strategy, known as chronological
backtracking, results in depth-first search of the problem space. The word “non-
determinism” is often used as if it were synonymous with the depth-first imple-
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(define *paths* ())
(define failsym ’@)

(define (choose choices)
(if (null? choices)

(fail)
(call-with-current-continuation

(lambda (cc)
(set! *paths*

(cons (lambda ()
(cc (choose (cdr choices))))

*paths*))
(car choices)))))

(define fail)

(call-with-current-continuation
(lambda (cc)
(set! fail

(lambda ()
(if (null? *paths*)

(cc failsym)
(let ((p1 (car *paths*)))
(set! *paths* (cdr *paths*))
(p1)))))))

Figure 22.4: Scheme implementation of choose and fail.

mentation. Floyd’s classic paper on nondeterministic algorithms uses the term in ◦
this sense, and this is also the kind of nondeterminism we find in nondetermin-
istic parsers and in Prolog. However, it should be noted that the implementation
given in Figure 22.4 is not the only possible implementation, nor even a correct
one. In principle, choose ought to be able to choose an object which meets any
computable specification. But a program which used these versions of choose
and fail to search a graph might not terminate, if the graph contained cycles.

In practice, nondeterminism usually means using a depth-first implementation
equivalent to the one in Figure 22.4, and leaving it to the user to avoid loops in
the search space. However, for readers who are interested, the last section in this
chapter describes how to implement true choose and fail.
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22.4 Common Lisp Implementation

This section describes how to write a form of choose and fail in Common Lisp.
As the previous section showed, call/ccmakes it easy to simulate nondetermin-
ism in Scheme. Continuations provide the direct embodiment of our theoretical
concept of a computational future. In Common Lisp, we can use instead the
continuation-passing macros of Chapter 20. With these macros we will be able to
provide a form of choose slightly uglier than the Scheme version presented in the
previous section, but equivalent in practice.

Figure 22.5 contains a Common Lisp implementation of fail, and two versions
of choose. The syntax of a Common Lisp choose is slightly different from the
Scheme version. The Scheme choose took one argument: a list of choices from
which to select a value. The Common Lisp version has the syntax of a progn.
It can be followed by any number of expressions, from which it chooses one to
evaluate:

> (defun do2 (x)
(choose (+ x 2) (* x 2) (expt x 2)))

DO2
> (do2 3)
5
> (fail)
6

At the toplevel, we see more clearly the backtracking which underlies nondeter-
ministic search. The variable *paths* is used to store paths which have not yet
been followed. When the computation reaches a choose expression with several
alternatives, the first alternative is evaluated, and the remaining choices are stored
on *paths*. If the program later on encounters a fail, the last stored choice
will be popped off *paths* and restarted. When there are no more paths left to
restart, fail returns a special value:

> (fail)
9
> (fail)
@

In Figure 22.5 the constant failsym, which represents failure, is defined to be
the symbol @. If you wanted to be able to have @ as an ordinary return value, you
could make failsym a gensym instead.

The other nondeterministic choice operator, choose-bind, has a slightly
different form. It should be given a symbol, a list of choices, and a body of code.
It will do a choose on the list of choices, bind the symbol to the value chosen, and
evaluate the body of code:
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(defparameter *paths* nil)
(defconstant failsym ’@)

(defmacro choose (&rest choices)
(if choices

‘(progn
,@(mapcar #’(lambda (c)

‘(push #’(lambda () ,c) *paths*))
(reverse (cdr choices)))

,(car choices))
’(fail)))

(defmacro choose-bind (var choices &body body)
‘(cb #’(lambda (,var) ,@body) ,choices))

(defun cb (fn choices)
(if choices

(progn
(if (cdr choices)

(push #’(lambda () (cb fn (cdr choices)))
*paths*))

(funcall fn (car choices)))
(fail)))

(defun fail ()
(if *paths*

(funcall (pop *paths*))
failsym))

Figure 22.5: Nondeterministic operators in Common Lisp.

> (choose-bind x ’(marrakesh strasbourg vegas)
(format nil "Let’s go to ~A." x))

"Let’s go to MARRAKESH."
> (fail)
"Let’s go to STRASBOURG."

It is only for convenience that the Common Lisp implementation provides two
choice operators. You could get the effect of choose from choose-bind by
always translating

(choose (foo) (bar))
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into

(choose-bind x ’(1 2)
(case x
(1 (foo))
(2 (bar))))

but programs are easier to read if we have a separate operator for this case.2
The Common Lisp choice operators store the bindings of relevant variables

using closures and variable capture. As macros, choose and choose-bind get
expanded within the lexical environment of the containing expressions. Notice
that what they push onto *paths* is a closure over the choice to be saved, locking
in all the bindings of the lexical variables referred to within it. For example, in
the expression

(let ((x 2))
(choose
(+ x 1)
(+ x 100)))

the value of x will be needed when the saved choices are restarted. This is why
choose is written to wrap its arguments in lambda-expressions. The expression
above gets macroexpanded into:

(let ((x 2))
(progn
(push #’(lambda () (+ x 100))

*paths*)
(+ x 1)))

The object which gets stored on *paths* is a closure containing a pointer to x. It
is the need to preserve variables in closures which dictates the difference between
the syntax of the Scheme and Common Lisp choice operators.

If we use choose and fail together with the continuation-passing macros
of Chapter 20, a pointer to our continuation variable *cont* will get saved as
well. By defining functions with =defun, calling them with =bind, and having
them return values with =values, we will be able to use nondeterminism in any
Common Lisp program.

With these macros, we can successfully run the example in which the nonde-
terministic choice occurs in a subroutine. Figure 22.6 shows the Common Lisp
version of parlor-trick, which works as it did in Scheme:

2If desired, the exported interface to this code could consist of just a single operator, because
(fail) is equivalent to (choose).



22.4 COMMON LISP IMPLEMENTATION 297

(=defun two-numbers ()
(choose-bind n1 ’(0 1 2 3 4 5)
(choose-bind n2 ’(0 1 2 3 4 5)
(=values n1 n2))))

(=defun parlor-trick (sum)
(=bind (n1 n2) (two-numbers)
(if (= (+ n1 n2) sum)

‘(the sum of ,n1 ,n2)
(fail))))

Figure 22.6: Common Lisp choice in a subroutine.

> (parlor-trick 7)
(THE SUM OF 2 5)

This works because the expression

(=values n1 n2)

gets macroexpanded into

(funcall *cont* n1 n2)

within the choose-binds. Each choose-bind is in turn macroexpanded into a
closure, which keeps pointers to all the variables referred to in the body, including
*cont*.

The restrictions on the use of choose, choose-bind, and fail are the same
as the restrictions given in Figure 20.5 for code which uses the continuation-
passing macros. Where a choice expression occurs, it must be the last thing to
be evaluated. Thus if we want to make sequential choices, in Common Lisp the
choices have to be nested:

> (choose-bind first-name ’(henry william)
(choose-bind last-name ’(james higgins)

(=values (list first-name last-name))))
(HENRY JAMES)
> (fail)
(HENRY HIGGINS)
> (fail)
(WILLIAM JAMES)
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which will, as usual, result in depth-first search.
The operators defined in Chapter 20 claimed the right to be the last expressions

evaluated. This right is now preempted by the new layer of macros; an =values
expression should appear within a choose expression, and not vice versa. That
is,

(choose (=values 1) (=values 2))

will work, but

(=values (choose 1 2)) ; wrong

will not. (In the latter case, the expansion of the choose would be unable to
capture the instance of *cont* in the expansion of the =values.)

As long as we respect the restrictions outlined here and in Figure 20.5, non-
deterministic choice in Common Lisp will now work as it does in Scheme. Fig-
ure 22.7 shows a Common Lisp version of the nondeterministic tree search pro-
gram given in Figure 22.2. The Common Lisp descent is a direct translation,
though it comes out slightly longer and uglier.

We now have Common Lisp utilities which make it possible to do nondeter-
ministic search without explicit backtracking. Having taken trouble to write this
code, we can reap the benefits by writing in very few lines programs which would
otherwise be large and messy. By building another layer of macros on top of
those presented here, we will be able to write an ATN compiler in one page of code
(Chapter 23), and a sketch of Prolog in two (Chapter 24).

Common Lisp programs which use choose should be compiled with tail-
recursion optimization—not just to make them faster, but to avoid running out of
stack space. Programs which “return” values by calling continuation functions
never actually return until the final fail. Without the optimization of tail-calls,
the stack would just grow and grow.◦

22.5 Cuts

This section shows how to use cuts in Scheme programs which do nondetermin-
istic choice. Though the word cut comes from Prolog, the concept belongs to
nondeterminism generally. You might want to use cuts in any program that made
nondeterministic choices.

Cuts are easier to understand when considered independently of Prolog. Let’s
imagine a real-life example. Suppose that the manufacturer of Chocoblob candies
decides to run a promotion. A small number of boxes of Chocoblobs will also
contain tokens entitling the recipient to valuable prizes. To ensure fairness, no
two of the winning boxes are sent to the same city.
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> (=defun descent (n1 n2)
(cond ((eq n1 n2) (=values (list n2)))

((kids n1) (choose-bind n (kids n1)
(=bind (p) (descent n n2)

(=values (cons n1 p)))))
(t (fail))))

DESCENT
> (defun kids (n)

(case n
(a ’(b c))
(b ’(d e))
(c ’(d f))
(f ’(g))))

KIDS
> (descent ’a ’g)
(A C F G)
> (fail)
@
> (descent ’a ’d)
(A B D)
> (fail)
(A C D)
> (fail)
@
> (descent ’a ’h)
@

Figure 22.7: Nondeterministic search in Common Lisp

After the promotion has begun, it emerges that the tokens are small enough to
be swallowed by children. Hounded by visions of lawsuits, Chocoblob lawyers
begin a frantic search for all the special boxes. Within each city, there are multiple
stores that sell Chocoblobs; within each store, there are multiple boxes. But the
lawyers may not have to open every box: once they find a coin-containing box in
a given city, they do not have to search any of the other boxes in that city, because
each city has at most one special box. To realize this is to do a cut.

What’s cut is a portion of the search tree. For Chocoblobs, the search tree
exists physically: the root node is at the company’s head office; the children of this
node are the cities where the special boxes were sent; the children of those nodes
are the stores in each city; and the children of each store represent the boxes in
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(define (find-boxes)
(set! *paths* ())
(let ((city (choose ’(la ny bos))))
(newline)
(let* ((store (choose ’(1 2)))

(box (choose ’(1 2))))
(let ((triple (list city store box)))

(display triple)
(if (coin? triple)

(display ’c))
(fail)))))

(define (coin? x)
(member x ’((la 1 2) (ny 1 1) (bos 2 2))))

Figure 22.8: Exhaustive Chocoblob search.

that store. When the lawyers searching this tree find one of the boxes containing
a coin, they can prune off all the unexplored branches descending from the city
they’re in now.

Cuts actually take two operations: you can do a cut when you know that part
of the search tree is useless, but first you have to mark the tree at the point where
it can be cut. In the Chocoblob example, common sense tells us that the tree is
marked as we enter each city. It’s hard to describe in abstract terms what a Prolog
cut does, because the marks are implicit. With an explicit mark operator, the effect
of a cut will be more easily understood.

Figure 22.8 shows a program that nondeterministically searches a smaller
version of the Chocoblob tree. As each box is opened, the program displays a list
of (city store box). If the box contains a coin, a c is printed after it:

> (find-boxes)
(LA 1 1)(LA 1 2)C(LA 2 1)(LA 2 2)
(NY 1 1)C(NY 1 2)(NY 2 1)(NY 2 2)
(BOS 1 1)(BOS 1 2)(BOS 2 1)(BOS 2 2)C
@

To implement the optimized search technique discovered by the Chocoblob
lawyers, we need two new operators: mark and cut. Figure 22.9 shows one way
to define them. Whereas nondeterminism itself can be understood independently
of any particular implementation, pruning the search tree is an optimization tech-
nique, and depends very much on how choose is implemented. The mark and



22.5 CUTS 301

(define (mark) (set! *paths* (cons fail *paths*)))

(define (cut)
(cond ((null? *paths*))

((equal? (car *paths*) fail)
(set! *paths* (cdr *paths*)))
(else
(set! *paths* (cdr *paths*))
(cut))))

Figure 22.9: Marking and pruning search trees.

(define (find-boxes)
(set! *paths* ())
(let ((city (choose ’(la ny bos))))
(mark) ;
(newline)
(let* ((store (choose ’(1 2)))

(box (choose ’(1 2))))
(let ((triple (list city store box)))

(display triple)
(if (coin? triple)

(begin (cut) (display ’c))) ;
(fail)))))

Figure 22.10: Pruned Chocoblob search.

cut defined in Figure 22.9 are suitable for use with the depth-first implementation
of choose (Figure 22.4).

The general idea is for mark to storemarkers in *paths*, the list of unexplored
choice-points. Calling cut pops *paths* all the way down to the most recent
marker. What should we use as a marker? We could use e.g. the symbol m, but
that would require us to rewrite fail to ignore the ms when it encountered them.
Fortunately, since functions are data objects too, there is at least one marker that
will allow us to use fail as is: the function fail itself. Then if fail happens
on a marker, it will just call itself.

Figure 22.10 shows how these operators would be used to prune the search
tree in the Chocoblob case. (Changed lines are indicated by semicolons.) We call
mark upon choosing a city. At this point, *paths* contains one continuation,
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Figure 22.11: A directed graph with a loop.

representing the search of the remaining cities.
If we find a box with a coin in it, we call cut, which sets *paths* back to the

value it had at the time of the mark. The effects of the cut are not visible until the
next call to fail. But when it comes, after the display, the next fail sends the
search all the way up to the topmost choose, even if there would otherwise have
been live choice-points lower in the search tree. The upshot is, as soon as we find
a box with a coin in it, we resume the search at the next city:

> (find-boxes)
(LA 1 1)(LA 1 2)C
(NY 1 1)C
(BOS 1 1)(BOS 1 2)(BOS 2 1)(BOS 2 2)C
@

In this case, we open seven boxes instead of twelve.

22.6 True Nondeterminism

A deterministic graph-searching program would have to take explicit steps to
avoid getting caught in a circular path. Figure 22.11 shows a directed graph
containing a loop. A program searching for a path from node a to node e risks
getting caught in the circular path ⟨a, b, c⟩. Unless a deterministic searcher used
randomization, breadth-first search, or checked explicitly for circular paths, the
search might never terminate. The implementation of path shown in Figure 22.12
avoids circular paths by searching breadth-first.

In principle, nondeterminism should save us the trouble of even considering
circular paths. The depth-first implementation of choose and fail given in Sec-
tion 22.3 is vulnerable to the problem of circular paths, but if we were being
picky, we would expect nondeterministic choose to be able to select an object
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(define (path node1 node2)
(bf-path node2 (list (list node1))))

(define (bf-path dest queue)
(if (null? queue)

’@
(let* ((path (car queue))

(node (car path)))
(if (eq? node dest)

(cdr (reverse path))
(bf-path dest

(append (cdr queue)
(map (lambda (n)

(cons n path))
(neighbors node))))))))

Figure 22.12: Deterministic search.

(define (path node1 node2)
(cond ((null? (neighbors node1)) (fail))

((memq node2 (neighbors node1)) (list node2))
(else (let ((n (true-choose (neighbors node1))))

(cons n (path n node2))))))

Figure 22.13: Nondeterministic search.

which meets any computable specification, and this case is no exception. Using a
correct choose, we should be able to write the shorter and clearer version of path
shown in Figure 22.13.

This section shows how to implement versions choose and fail which are safe
even from circular paths. Figure 22.14 contains a Scheme implementation of true
nondeterministic choose and fail. Programs which use these versions of choose ◦
and fail shouldfind solutionswhenever the equivalent nondeterministic algorithms
would, subject to hardware limitations.

The implementation of true-choose defined in Figure 22.14 works by treat-
ing the list of stored paths as a queue. Programs using true-choosewill search
their state-space breadth-first. When the program reaches a choice-point, contin-
uations to follow each choice are appended to the end of the list of stored paths.
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(define *paths* ())
(define failsym ’@)

(define (true-choose choices)
(call-with-current-continuation
(lambda (cc)
(set! *paths* (append *paths*

(map (lambda (choice)
(lambda () (cc choice)))

choices)))
(fail))))

(define fail)

(call-with-current-continuation
(lambda (cc)
(set! fail

(lambda ()
(if (null? *paths*)

(cc failsym)
(let ((p1 (car *paths*)))
(set! *paths* (cdr *paths*))
(p1)))))))

Figure 22.14: Correct choose in Scheme.

(Scheme’s map returns the same values as Common Lisp’s mapcar.) After this
there is a call to fail, which is unchanged.

This version of choose would allow the implementation of path defined in
Figure 22.13 to find a path—indeed, the shortest path—from a to e in the graph
displayed in Figure 22.11.

Although for the sake of completeness this chapter has provided correct ver-
sions of choose and fail, the original implementations will usually suffice. The
value of a programming language abstraction is not diminished just because its
implementation isn’t formally correct. In some languages we act as if we had
access to all the integers, even though the largest one may be only 32767. As
long as we know how far we can push the illusion, there is little danger to it—
little enough, at least, to make the abstraction a bargain. The conciseness of
the programs presented in the next two chapters is due largely to their use of
nondeterministic choose and fail.
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Parsing with ATNs

This chapter shows how to write a nondeterministic parser as an embedded lan-
guage. The first part explains what ATN parsers are, and how they represent
grammar rules. The second part presents an ATN compiler which uses the nonde-
terministic operators defined in the previous chapter. The final sections present a
small ATN grammar, and show it in action parsing sample input.

23.1 Background

Augmented Transition Networks, or ATNs, are a form of parser described by
Bill Woods in 1970. Since then they have become a widely used formalism for ◦
parsing natural language. In an hour you can write an ATN grammar which parses
interesting English sentences. For this reason, people are often held in a sort of
spell when they first encounter them.

In the 1970s, some people thought that ATNs might one day be components
of truly intelligent-seeming programs. Though few hold this position today, ATNs
have found a niche. They aren’t as good as you are at parsing English, but they
can still parse an impressive variety of sentences.

ATNs are useful if you observe the following four restrictions:

1. Use them in a semantically limited domain—in a front-end to a particular
database, for example.

2. Don’t feed them very difficult input. Among other things, don’t expect
them to understand wildly ungrammatical sentences the way people can.

305
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3. Only use them for English, or other languages in which word order deter-
mines grammatical structure. ATNs would not be useful in parsing inflected
languages like Latin.

4. Don’t expect them to work all the time. Use them in applications where it’s
helpful if they work ninety percent of the time, not those where it’s critical
that they work a hundred percent of the time.

Within these limits there are plenty of useful applications. The canonical example
is as the front-end of a database. If you attach an ATN-driven interface to such
a system, then instead of making a formal query, users can ask questions in a
constrained form of English.

23.2 The Formalism

To understand what ATNs do, we should recall their full name: augmented transi-
tion networks. A transition network is a set of nodes joined together by directed
arcs—essentially, a flow-chart. One node is designated the start node, and some
other nodes are designated terminal nodes. Conditions are attached to each arc,
which have to be met before the arc can be followed. There will be an input
sentence, with a pointer to the current word. Following some arcs will cause the
pointer to be advanced. To parse a sentence on a transition network is to find a
path from the start node to some terminal node, along which all the conditions
can be met.

ATNs add two features to this model:

1. ATNs have registers—named slots for storing away information as the parse
proceeds. As well as performing tests, arcs can modify the contents of the
registers.

2. ATNs are recursive. Arcs may require that, in order to follow them, the
parse must successfully make it through some sub-network.

Terminal nodes use the information which has accumulated in the registers to
build list structures, which they return in much the same way that functions return
values. In fact, with the exception of being nondeterministic, ATNs behave a lot
like a functional programming language.

The ATN defined in Figure 23.1 is nearly the simplest possible. It parses noun-
verb sentences of the form “Spot runs.” The network representation of this ATN is
shown in Figure 23.2.

What does this ATN do when given the input (spot runs)? The first node has
one outgoing arc, a cat, or category arc, leading to node s2. It says, effectively,
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(defnode s
(cat noun s2
(setr subj *)))

(defnode s2
(cat verb s3
(setr v *)))

(defnode s3
(up ‘(sentence

(subject ,(getr subj))
(verb ,(getr v)))))

Figure 23.1: A very small ATN.

Figure 23.2: Graph of a small ATN.

you can follow me if the current word is a noun, and if you do, you must store
the current word (indicated by *) in the subj register. So we leave this node with
spot stored in the subj register.

There is always a pointer to the current word. Initially it points to the first
word in the sentence. When cat arcs are followed, this pointer is moved forward
one. So when we get to node s2, the current word is the second, runs. The
second arc is just like the first, except that it is looking for a verb. It finds runs,
stores it in register v, and proceeds to s3.

The final node, s3, has only a pop, or terminal, arc. (Nodes with pop arcs have
dashed borders.) Because we arrive at the pop arc just as we run out of input, we
have a successful parse. The pop arc returns the backquoted expression within it:

(sentence (subject spot)
(verb runs))

An ATN corresponds to the grammar of the language it is designed to parse. A
decent-sized ATN for parsing English will have a main network for parsing sen-
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tences, and sub-networks for parsing noun-phrases, prepositional phrases, modi-
fier groups, and so on. The need for recursion is obvious when we consider that
noun-phrasesmay contain prepositional phraseswhichmay contain noun-phrases,
ad infinitum, as in

“the key on the table in the hall of the house on the hill”

23.3 Nondeterminism

Although we didn’t see it in this small example, ATNs are nondeterministic. A
node can have several outgoing arcs, more than one of which could be followed
with a given input. For example, a reasonably good ATN should be able to parse
both imperative and declarative sentences. Thus thefirst node could have outgoing
cat arcs for both nouns (in statements) and verbs (in commands).

What if the first word of the sentence is “time,” which is both a noun and a
verb? How does the parser know which arc to follow? When ATNs are described
as nondeterministic, it means that users can assume that the parser will correctly
guess which arc to follow. If some arcs lead only to failed parses, they won’t be
followed.

In reality the parser cannot look into the future. It simulates correct guessing
by backtracking when it runs out of arcs, or input. But all the machinery of
backtracking is inserted automatically into the code generated by the ATN compiler.
We can write ATNs as if the parser really could guess which arcs to follow.

Like many (perhaps most) programs which use nondeterminism, ATNs use
the depth-first implementation. Experience parsing English quickly teaches one
that any given sentence has a slew of legal parsings, most of them junk. On a
conventional single-processor machine, one is better off trying to get good parses
quickly. Instead of getting all the parses at once, we get just the most likely. If
it has a reasonable interpretation, then we have saved the effort of finding other
parses; if not, we can call fail to get more.

To control the order in which parses are generated, the programmer needs to
have some way of controlling the order in which choose tries alternatives. The
depth-first implementation isn’t the onlyway of controlling the order of the search.
Any implementation except a randomizing one imposes some kind of order. How-
ever, ATNs, like Prolog, have the depth-first implementation conceptually built-in.
In an ATN, the arcs leaving a node are tried in the order in which they were defined.
This convention allows the programmer to order arcs by priority.
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23.4 An ATN Compiler

Ordinarily, an ATN-based parser needs three components: the ATN itself, an inter-
preter for traversing it, and a dictionary which can tell it, for example, that “runs”
is a verb. Dictionaries are a separate topic—here we will use a rudimentary hand-
made one. Nor will we need to deal with a network interpreter, because we will
translate the ATN directly into Lisp code. The program described here is called an
ATN compiler because it transforms a whole ATN into code. Nodes are transformed
into functions, and arcs become blocks of code within them.

Chapter 6 introduced the use of functions as a form of representation. This
practice usually makes programs faster. Here it means that there will be no
overhead of interpreting the network at runtime. The disadvantage is that there is
less to inspect when something goes wrong, especially if you’re using a Common
Lisp implementation which doesn’t provide function-lambda-expression.

Figure 23.3 contains all the code for transforming ATN nodes into Lisp code.
The macro defnode is used to define nodes. It generates little code itself, just a
choose over the expressions generated for each of the arcs. The two parameters
of a node-function get the following values: pos is the current input pointer (an
integer), and regs is the current set of registers (a list of assoc-lists).

Themacro defnode defines a macro with the same name as the corresponding
node. Node s will be defined as macro s. This convention enables arcs to know
how to refer to their destination nodes—they just call the macro with that name.
It also means that you shouldn’t give nodes the names of existing functions or
macros, or these will be redefined.

Debugging ATNs requires some sort of trace facility. Because nodes become
functions, we don’t have to write our own. We can use the built-in Lisp function
trace. As mentioned on page 266, using =defun to define nodes means that we
can trace parses going through node mods by saying (trace =mods).

The arcswithin the body of a node are simplymacro calls, returning codewhich
gets embedded in the node function being made by defnode. The parser uses
nondeterminism at each node by executing a choose over the code representing
each of the arcs leaving that node. A node with several outgoing arcs, say

(defnode foo
<arc 1>
<arc 2>)

gets translated into a function definition of the following form:

(=defun foo (pos regs)
(choose
<translation of arc 1>
<translation of arc 2>))
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(defmacro defnode (name &rest arcs)
‘(=defun ,name (pos regs) (choose ,@arcs)))

(defmacro down (sub next &rest cmds)
‘(=bind (* pos regs) (,sub pos (cons nil regs))

(,next pos ,(compile-cmds cmds))))

(defmacro cat (cat next &rest cmds)
‘(if (= (length *sent*) pos)

(fail)
(let ((* (nth pos *sent*)))
(if (member ’,cat (types *))

(,next (1+ pos) ,(compile-cmds cmds))
(fail)))))

(defmacro jump (next &rest cmds)
‘(,next pos ,(compile-cmds cmds)))

(defun compile-cmds (cmds)
(if (null cmds)

’regs
‘(,@(car cmds) ,(compile-cmds (cdr cmds)))))

(defmacro up (expr)
‘(let ((* (nth pos *sent*)))

(=values ,expr pos (cdr regs))))

(defmacro getr (key &optional (regs ’regs))
‘(let ((result (cdr (assoc ’,key (car ,regs)))))

(if (cdr result) result (car result))))

(defmacro set-register (key val regs)
‘(cons (cons (cons ,key ,val) (car ,regs))

(cdr ,regs)))

(defmacro setr (key val regs)
‘(set-register ’,key (list ,val) ,regs))

(defmacro pushr (key val regs)
‘(set-register ’,key

(cons ,val (cdr (assoc ’,key (car ,regs))))
,regs))

Figure 23.3: Compilation of nodes and arcs.
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(defnode s
(down np s/subj
(setr mood ’decl)
(setr subj *))

(cat v v
(setr mood ’imp)
(setr subj ’(np (pron you)))
(setr aux nil)
(setr v *)))

is macroexpanded into:

(=defun s (pos regs)
(choose
(=bind (* pos regs) (np pos (cons nil regs))
(s/subj pos

(setr mood ’decl
(setr subj * regs))))

(if (= (length *sent*) pos)
(fail)
(let ((* (nth pos *sent*)))
(if (member ’v (types *))

(v (1+ pos)
(setr mood ’imp

(setr subj ’(np (pron you))
(setr aux nil

(setr v * regs)))))
(fail))))))

Figure 23.4: Macroexpansion of a node function.

Figure 23.4 shows the macroexpansion of the first node in the sample ATN of
Figure 23.11. When called at runtime, node functions like s nondeterministically
choose an arc to follow. The parameter pos will be the current position in the
input sentence, and regs the current registers.

Cat arcs, as we saw in our original example, insist that the current word of
input belong to a certain grammatical category. Within the body of a cat arc, the
symbol * will be bound to the current word of input.

Push arcs, defined with down, require successful calls to sub-networks. They
take two destination nodes, the sub-network destination sub, and the next node
in the current network, next. Notice that whereas the code generated for a cat
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arc simply calls the next node in the network, the code generated for a push
arc uses =bind. The push arc must successfully return from the sub-network
before continuing on to the node which follows it. A clean set of registers (nil)
gets consed onto the front of regs before they are passed to the sub-network.
In the bodies of other types of arcs, the symbol * will be bound to the current
word of input, but in push arcs it will be bound to the expression returned by the
sub-network.

Jump arcs are like short-circuits. The parser skips right across to the destination
node—no tests are required, and the input pointer isn’t advanced.

The final type of arc is the pop arc, defined with up. Pop arcs are unusual in
that they don’t have a destination. Just as a Lisp return leads not to a subroutine
but the calling function, a pop arc leads not to a new node but back to the “calling”
push arc. The =values in a pop arc “returns” a value to the =bind in the most
recent push arc. But, as Section 20.2 explained, what’s happening is not a normal
Lisp return: the body of the =bind has been wrapped up into a continuation and
passed down as a parameter through any number of arcs, until the =values of the
pop arc finally calls it on the “return” values.

Chapter 22 described two versions of nondeterministic choose: a fast choose
(page 293) that wasn’t guaranteed to terminate when therewere loops in the search
space, and a slower true-choose (page 304) which was safe from such loops.
There can be cycles in an ATN, of course, but as long as at least one arc in each
cycle advances the input pointer, the parser will eventually run off the end of the
sentence. The problem arises with cycles which don’t advance the input pointer.
Here we have two alternatives:

1. Use the slower, correct nondeterministic choice operator (the depth-first
version given on page 396).

2. Use the fast choose, and specify that it is an error to define networks
containing cycles which could be traversed by following just jump arcs.

The code defined in Figure 23.3 takes the second approach.
The last four definitions in Figure 23.3 define the macros used to read and

set registers within arc bodies. In this program, register sets are represented as
assoc-lists. An ATN deals not with sets of registers, but sets of sets of registers.
When the parser moves down to a sub-network, it gets a clean set of registers
pushed on top of the existing ones. Thus the whole collection of registers, at any
given time, is a list of assoc-lists.

The predefined register operators work on the current, or topmost, set of regis-
ters: getr reads a register; setr sets one; and pushr pushes a value into one. Both◦
getr and pushr use the primitive register manipulation macro set-register.



23.4 AN ATN COMPILER 313

Note that registers don’t have to be declared. If set-register is sent a certain
name, it will create a register with that name.

The register operators are all completely nondestructive. Cons, cons, cons,
says set-register. This makes them slow and generates a lot of garbage, but,
as explained on page 261, objects used in a part of a programwhere continuations
are made should not be destructively modified. An object in one thread of control
may be shared by another thread which is currently suspended. In this case, the
registers found in one parse will share structure with the registers in many of the
other parses. If speed became an issue, we could store registers in vectors instead
of assoc-lists, and recycle used vectors into a common pool.

Push, cat, and jump arcs can all contain bodies of expressions. Ordinarily
these will be just setrs. By calling compile-cmdson their bodies, the expansion
functions of these arc types string a series of setrs into a single expression:

> (compile-cmds ’((setr a b) (setr c d)))
(SETR A B (SETR C D REGS))

Each expression has the next expression inserted as its last argument, except the
last, which gets regs. So a series of expressions in the body of an arc will be
transformed into a single expression returning the new registers.

This approach allows users to insert arbitrary Lisp code into the bodies of arcs
by wrapping it in a progn. For example:

> (compile-cmds ’((setr a b)
(progn (princ "ek!"))
(setr c d)))

(SETR A B (PROGN (PRINC "ek!") (SETR C D REGS)))

Certain variables are left visible to code occurring in arc bodies. The sentence
will be in the global *sent*. Two lexical variables will also be visible: pos,
containing the current input pointer, and regs, containing the current registers.
This is another example of intentional variable capture. If it were desirable to
prevent the user from referring to these variables, they could be replaced with
gensyms.

Themacro with-parses,defined in Figure 23.5,gives us away of invoking an
ATN. It should be called with the name of a start node, an expression to be parsed,
and a body of code describing what to do with the returned parses. The body of
code within a with-parses expressionwill be evaluated once for each successful
parse. Within the body, the symbol parse will be bound to the current parse.
Superficially with-parses resembles operators like dolist, but underneath it
uses backtracking search instead of simple iteration. A with-parses expression
will return @, because that’s what fail returns when it runs out of choices.
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(defmacro with-parses (node sent &body body)
(with-gensyms (pos regs)
‘(progn

(setq *sent* ,sent)
(setq *paths* nil)
(=bind (parse ,pos ,regs) (,node 0 ’(nil))
(if (= ,pos (length *sent*))

(progn ,@body (fail))
(fail))))))

Figure 23.5: Toplevel macro.

Before going on to look at a more representative ATN, let’s look at a parsing
generated from the tiny ATN defined earlier. The ATN compiler (Figure 23.3)
generates code which calls types to determine the grammatical roles of a word,
so first we have to give it some definition:

(defun types (w)
(cdr (assoc w ’((spot noun) (runs verb)))))

Now we just call with-parses with the name of the start node as the first
argument:

> (with-parses s ’(spot runs)
(format t "Parsing: ~A~%" parse))

Parsing: (SENTENCE (SUBJECT SPOT) (VERB RUNS))
@

23.5 A Sample ATN

Now that the whole ATN compiler has been described, we can go on to try out
some parses using a sample network. In order to make an ATN parser handle a
richer variety of sentences, you make the ATNs themselves more complicated, not
the ATN compiler. The compiler presented here is a toy mainly in the sense that
it’s slow, not in the sense of having limited power.

The power (as distinct from speed) of a parser is in the grammar, and here
limited space really will force us to use a toy version. Figures 23.8 through 23.11
define the ATN (or set of ATNs) represented in Figure 23.6. This network is just
big enough to yield several parsings for the classic parser fodder “Time flies like
an arrow.”
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Figure 23.6: Graph of a larger ATN.

(defun types (word)
(case word
((do does did) ’(aux v))
((time times) ’(n v))
((fly flies) ’(n v))
((like) ’(v prep))
((liked likes) ’(v))
((a an the) ’(det))
((arrow arrows) ’(n))
((i you he she him her it) ’(pron))))

Figure 23.7: Nominal dictionary.

We need a slightly larger dictionary to parsemore complex input. The function
types (Figure 23.7) provides a dictionary of the most primitive sort. It defines a
22-word vocabulary, and associates each word with a list of one or more simple
grammatical roles.
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(defnode mods
(cat n mods/n
(setr mods *)))

(defnode mods/n
(cat n mods/n
(pushr mods *))

(up ‘(n-group ,(getr mods))))

Figure 23.8: Sub-network for strings of modifiers.

The components of an ATN are themselves ATNs. The smallest ATN in our set
is the one in Figure 23.8. It parses strings of modifiers, which in this case means
just strings of nouns. The first node, mods, accepts a noun. The second node,
mods/n, can either look for more nouns, or return a parsing.

Section 3.4 explained how writing programs in a functional style makes them
easier to test:

1. In a functional program, components can be tested individually.

2. In Lisp, functions can be tested interactively, in the toplevel loop.

Together these two principles allow interactive development: when we write
functional programs in Lisp, we can test each piece as we write it.

ATNs are so like functional programs—in this implementation, they macroex-
pand into functional programs—that the possibility of interactive development
applies to them as well. We can test an ATN starting from any node, simply by
giving its name as the first argument to with-parses:

> (with-parses mods ’(time arrow)
(format t "Parsing: ~A~%" parse))

Parsing: (N-GROUP (ARROW TIME))
@

The next two networks have to be discussed together,because they aremutually
recursive. The network defined in Figure 23.9, which begins with the node np,
is used to parse noun phrases. The network defined in Figure 23.10 parses
prepositional phrases. Noun phrases may contain prepositional phrases and vice
versa, so the two networks each contain a push arc which calls the other.

The noun phrase network contains six nodes. The first node, np has three
choices. If it reads a pronoun, then it can move to node pron, which pops out of
the network:
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(defnode np
(cat det np/det
(setr det *))

(jump np/det
(setr det nil))

(cat pron pron
(setr n *)))

(defnode pron
(up ‘(np (pronoun ,(getr n)))))

(defnode np/det
(down mods np/mods
(setr mods *))

(jump np/mods
(setr mods nil)))

(defnode np/mods
(cat n np/n
(setr n *)))

(defnode np/n
(up ‘(np (det ,(getr det))

(modifiers ,(getr mods))
(noun ,(getr n))))

(down pp np/pp
(setr pp *)))

(defnode np/pp
(up ‘(np (det ,(getr det))

(modifiers ,(getr mods))
(noun ,(getr n))
,(getr pp))))

Figure 23.9: Noun phrase sub-network.

> (with-parses np ’(it)
(format t "Parsing: ~A~%" parse))

Parsing: (NP (PRONOUN IT))
@
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(defnode pp
(cat prep pp/prep
(setr prep *)))

(defnode pp/prep
(down np pp/np
(setr op *)))

(defnode pp/np
(up ‘(pp (prep ,(getr prep))

(obj ,(getr op)))))

Figure 23.10: Prepositional phrase sub-network.

Both the other arcs lead to node np/det: one arc reads a determiner (e.g. “the”),
and the other arc simply jumps, reading no input. At node np/det, both arcs
lead to np/mods; np/det has the option of pushing to sub-network mods to pick
up a string of modifiers, or jumping. Node np-mods reads a noun and continues
to np/n. This node can either pop a result, or push to the prepositional phrase
network to try to pick up a prepositional phrase. The final node, np/pp, pops a
result.

Different types of noun phrases will have different parse paths. Here are two
parsings on the noun phrase network:

> (with-parses np ’(arrows)
(pprint parse))

(NP (DET NIL)
(MODIFIERS NIL)
(NOUN ARROWS))

@
> (with-parses np ’(a time fly like him)

(pprint parse))
(NP (DET A)

(MODIFIERS (N-GROUP TIME))
(NOUN FLY)
(PP (PREP LIKE)

(OBJ (NP (PRONOUN HIM)))))
@

The first parse succeeds by jumping to np/det, jumping again to np/mods,
reading a noun, then popping at np/n. The second never jumps, pushing first for
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(defnode s
(down np s/subj
(setr mood ’decl)
(setr subj *))

(cat v v
(setr mood ’imp)
(setr subj ’(np (pron you)))
(setr aux nil)
(setr v *)))

(defnode s/subj
(cat v v
(setr aux nil)
(setr v *)))

(defnode v
(up ‘(s (mood ,(getr mood))

(subj ,(getr subj))
(vcl (aux ,(getr aux))

(v ,(getr v)))))
(down np s/obj
(setr obj *)))

(defnode s/obj
(up ‘(s (mood ,(getr mood))

(subj ,(getr subj))
(vcl (aux ,(getr aux))

(v ,(getr v)))
(obj ,(getr obj)))))

Figure 23.11: Sentence network.

a string of modifiers, and again for a prepositional phrase. As is often the case
with parsers, expressions which are syntactically well-formed are such nonsense
semantically that it’s difficult for humans even to detect the syntactic structure.
Here the noun phrase “a time fly like him” has the same form as “a Lisp hacker
like him.”

Now all we need is a network for recognizing sentence structure. The network
shown in Figure 23.11 parses both commands and statements. The start node
is conventionally called s. The first node leaving it pushes for a noun phrase,
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> (with-parses s ’(time flies like an arrow)
(pprint parse))

(S (MOOD DECL)
(SUBJ (NP (DET NIL)

(MODIFIERS (N-GROUP TIME))
(NOUN FLIES)))

(VCL (AUX NIL)
(V LIKE))

(OBJ (NP (DET AN)
(MODIFIERS NIL)
(NOUN ARROW))))

(S (MOOD IMP)
(SUBJ (NP (PRON YOU)))
(VCL (AUX NIL)

(V TIME))
(OBJ (NP (DET NIL)

(MODIFIERS NIL)
(NOUN FLIES)
(PP (PREP LIKE)

(OBJ (NP (DET AN)
(MODIFIERS NIL)
(NOUN ARROW)))))))

@

Figure 23.12: Two parsings for a sentence.

which will be the subject of the sentence. The second outgoing arc reads a verb.
When a sentence is syntactically ambiguous, both arcs could succeed, ultimately
yielding two or more parsings, as in Figure 23.12. The first parsing is analogous
to “Island nations like a navy,” and the second is analogous to “Find someone like
a policeman.” More complex ATNs are able to find six or more parsings for “Time
flies like an arrow.”

The ATN compiler in this chapter is presented more as a distillation of the idea
of an ATN than as production software. A few obvious changes would make this
code much more efficient. When speed is important, the whole idea of simulating
nondeterminism with closures may be too slow. But when it isn’t essential, the
programming techniques described here lead to very concise programs.
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Prolog

This chapter describes how to write Prolog as an embedded language. Chapter 19
showed how to write a program which answered complex queries on databases.
Here we add one new ingredient: rules, which make it possible to infer facts from
those already known. A set of rules defines a tree of implications. In order to use
rules which would otherwise imply an unlimited number of facts, we will search
this implication tree nondeterministically.

Prolog makes an excellent example of an embedded language. It combines
three ingredients: pattern-matching, nondeterminism, and rules. Chapters 18
and 22 give us the first two independently. By building Prolog on top of the
pattern-matching and nondeterministic choice operators we have already, we will
have an example of a real, multi-layer bottom-up system. Figure 24.1 shows the
layers of abstraction involved.

The secondary aim of this chapter is to study Prolog itself. For experienced
programmers, the most convenient explanation of Prolog may be a sketch of its
implementation. Writing Prolog in Lisp is particularly interesting, because it
brings out the similarities between the two languages.

24.1 Concepts

Chapter 19 showed how to write a database system which would accept complex
queries containing variables, and generate all the bindings which made the query
true in the database. In the following example, (after calling clear-db) we assert
two facts and then query the database:

321
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Figure 24.1: Layers of abstraction.

> (fact painter reynolds)
(REYNOLDS)
> (fact painter gainsborough)
(GAINSBOROUGH)
> (with-answer (painter ?x)

(print ?x))
GAINSBOROUGH
REYNOLDS
NIL

Conceptually, Prolog is the database program with the addition of rules, which
make it possible to satisfy a query not just by looking it up in the database, but by
inferring it from other known facts. For example, if we have a rule like:

If (hungry ?x) and (smells-of ?x turpentine)
Then (painter ?x)

then the query (painter ?x)will be satisfied for ?x = raoulwhen the database
contains both (hungry raoul) and (smells-of raoul turpentine), even
if it doesn’t contain (painter raoul).

In Prolog, the if-part of a rule is called the body, and the then-part the head.
(In logic, the names are antecedent and consequent, but it is just as well to have
separate names, to emphasize that Prolog inference is not the same as logical
implication.) When trying to establish bindings1 for a query, the program looks
first at the head of a rule. If the head matches the query that the program is trying
to answer, the program will then try to establish bindings for the body of the rule.
Bindings which satisfy the body will, by definition, satisfy the head.

The facts used in the body of the rule may in turn be inferred from other rules:

1Many of the concepts used in this chapter, including this sense of bindings, are explained in
Section 18.4.



24.2 AN INTERPRETER 323

If (gaunt ?x) or (eats-ravenously ?x)
Then (hungry ?x)

and rules may be recursive, as in:

If (surname ?f ?n) and (father ?f ?c)
Then (surname ?c ?n)

Prolog will be able to establish bindings for a query if it can find some path
through the rules which leads eventually to known facts. So it is essentially a
search engine: it traverses the tree of logical implications formed by the rules,
looking for a successful path.

Though rules and facts sound like distinct types of objects, they are conceptu-
ally interchangeable. Rules can be seen as virtual facts. If we want our database
to reflect the discovery that big, fierce animals are rare, we could look for all the
x such that there are facts (species x), (big x), and (fierce x), and add a
new fact (rare x). However, by defining a rule to say

If (species ?x) and (big ?x) and (fierce ?x)
Then (rare ?x)

we get the same effect, without actually having to add all the (rare x) to the
database. We can even define rules which imply an infinite number of facts. Thus
rules make the database smaller at the expense of extra processing when it comes
time to answer questions.

Facts, meanwhile, are a degenerate case of rules. The effect of any fact F
could be duplicated by a rule whose body was always true:

If true
Then F

To simplify our implementation, we will take advantage of this principle and
represent facts as bodyless rules. ◦

24.2 An Interpreter

Section 18.4 showed two ways to define if-match. The first was simple but
inefficient. Its successor was faster because it did much of its work at compile-
time. We will follow a similar strategy here. In order to introduce some of the
topics involved, we will begin with a simple interpreter. Later we will show how
to write the same program much more efficiently.
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(defmacro with-inference (query &body body)
‘(progn

(setq *paths* nil)
(=bind (binds) (prove-query ’,(rep_ query) nil)
(let ,(mapcar #’(lambda (v)

‘(,v (fullbind ’,v binds)))
(vars-in query #’atom))

,@body
(fail)))))

(defun rep_ (x)
(if (atom x)

(if (eq x ’_) (gensym "?") x)
(cons (rep_ (car x)) (rep_ (cdr x)))))

(defun fullbind (x b)
(cond ((varsym? x) (aif2 (binding x b)

(fullbind it b)
(gensym)))

((atom x) x)
(t (cons (fullbind (car x) b)

(fullbind (cdr x) b)))))

(defun varsym? (x)
(and (symbolp x) (eq (char (symbol-name x) 0) #\?)))

Figure 24.2: Toplevel macro.

Figures 24.2–24.4 contain the code for a simple Prolog interpreter. It ac-
cepts the same queries as the query interpreter of Section 19.3, but uses rules
instead of the database to generate bindings. The query interpreter was invoked
through a macro called with-answer. The interface to the Prolog interpreter
will be through a similar macro, called with-inference. Like with-answer,
with-inference is given a query and a series of Lisp expressions. Variables in
the query are symbols beginning with a question mark:

(with-inference (painter ?x)
(print ?x))

A call to with-inference expands into code that will evaluate the Lisp expres-
sions for each set of bindings generated by the query. The call above, for example,
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will print each x for which it is possible to infer (painter x). ◦
Figure 24.2 shows the definition of with-inference, together with the func-

tion it calls to retrieve bindings. One notable difference between with-answer
and with-inference is that the former simply collected all the valid bindings.
The new program searches nondeterministically. We see this in the definition of
with-inference: instead of expanding into a loop, it expands into code which
will return one set of bindings, followed by a fail to restart the search. This
gives us iteration implicitly, as in:

> (choose-bind x ’(0 1 2 3 4 5 6 7 8 9)
(princ x)
(if (= x 6) x (fail)))

0123456
6

The function fullbind points to another difference between with-answer
and with-inference. Tracing back through a series of rules can build up binding
lists in which the binding of a variable is a list of other variables. To make use of
the results of a query we now need a recursive function for retrieving bindings.
This is the purpose of fullbind:

> (setq b ’((?x . (?y . ?z)) (?y . foo) (?z . nil)))
((?X ?Y . ?Z) (?Y . FOO) (?Z))
> (values (binding ’?x b))
(?Y . ?Z)
> (fullbind ’?x b)
(FOO)

Bindings for the query are generated by a call toprove-query in the expansion
of with-inference. Figure 24.3 shows the definition of this function and the
functions it calls. This code is structurally isomorphic to the query interpreter
described in Section 19.3. Both programs use the same functions for matching,
but where the query interpreter used mapping or iteration, the Prolog interpreter
uses equivalent chooses.

Using nondeterministic search instead of iteration doesmake the interpretation
of negated queries a bit more complex. Given a query like

(not (painter ?x))

the query interpreter could just try to establish bindings for (painter ?x),
returning nil if any were found. With nondeterministic search we have to be
more careful: we don’t want the interpretation of (painter ?x) to fail back
outside the scope of the not, nor do we want it to leave saved paths that might
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(=defun prove-query (expr binds)
(case (car expr)
(and (prove-and (cdr expr) binds))
(or (prove-or (cdr expr) binds))
(not (prove-not (cadr expr) binds))
(t (prove-simple expr binds))))

(=defun prove-and (clauses binds)
(if (null clauses)

(=values binds)
(=bind (binds) (prove-query (car clauses) binds)

(prove-and (cdr clauses) binds))))

(=defun prove-or (clauses binds)
(choose-bind c clauses
(prove-query c binds)))

(=defun prove-not (expr binds)
(let ((save-paths *paths*))
(setq *paths* nil)
(choose (=bind (b) (prove-query expr binds)

(setq *paths* save-paths)
(fail))

(progn
(setq *paths* save-paths)
(=values binds)))))

(=defun prove-simple (query binds)
(choose-bind r *rlist*
(implies r query binds)))

Figure 24.3: Interpretation of queries.

be restarted later. So now the test for (painter ?x) is done with a temporarily
empty list of saved states, and the old list is restored on the way out.

Another difference between this program and the query interpreter is in the
interpretation of simple patterns—expressions such as (painter ?x)which con-
sist just of a predicate and some arguments. When the query interpreter generated
bindings for a simple pattern, it called lookup (page 251). Now, instead of calling
lookup, we have to get any bindings implied by the rules.
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(defvar *rlist* nil)

(defmacro <- (con &rest ant)
(let ((ant (if (= (length ant) 1)

(car ant)
‘(and ,@ant))))

‘(length (conc1f *rlist* (rep_ (cons ’,ant ’,con))))))

(=defun implies (r query binds)
(let ((r2 (change-vars r)))
(aif2 (match query (cdr r2) binds)

(prove-query (car r2) it)
(fail))))

(defun change-vars (r)
(sublis (mapcar #’(lambda (v)

(cons v (symb ’? (gensym))))
(vars-in r #’atom))

r))

Figure 24.4: Code involving rules.

⟨rule⟩ : (<- ⟨sentence⟩ ⟨query⟩)
⟨query⟩ : (not ⟨query⟩)

: (and ⟨query⟩*)
: (or ⟨query⟩*)
: ⟨sentence⟩

⟨sentence⟩ : (⟨symbol⟩ ⟨argument⟩*)
⟨argument⟩ : ⟨variable⟩

: ⟨symbol⟩
: ⟨number⟩

⟨variable⟩ : ?⟨symbol⟩

Figure 24.5: Syntax of rules.

Code for defining and using rules is shown in Figure 24.4. The rules are kept
in a global list, *rlist*. Each rule is represented as a dotted pair of body and
head. At the time a rule is defined, all the underscores are replaced with unique
variables.
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The definition of <- follows three conventions often used in programs of this
type:

1. New rules are added to the end rather than the front of the list, so that they
will be applied in the order that they were defined.

2. Rules are expressed head first, since that’s the order in which the program
examines them.

3. Multiple expressions in the body are within an implicit and.

The outermost call to length in the expansion of <- is simply to avoid printing a
huge list when <- is called from the toplevel.

The syntax of rules is given in Figure 24.5. The head of a rulemust be a pattern
for a fact: a list of a predicate followed by zero or more arguments. The body
may be any query that could be handled by the query interpreter of Chapter 19.
Here is the rule from earlier in this chapter:

(<- (painter ?x) (and (hungry ?x)
(smells-of ?x turpentine)))

or just

(<- (painter ?x) (hungry ?x)
(smells-of ?x turpentine))

As in the query interpreter, arguments like turpentine do not get evaluated, so
they don’t have to be quoted.

When prove-simple is asked to generate bindings for a query, it nondeter-
ministically chooses a rule and sends both rule and query to implies. The latter
function then tries to match the query with the head of the rule. If the match
succeeds, implies will call prove-query to establish bindings for the body.
Thus we recursively search the tree of implications.

The function change-vars replaces all the variables in a rule with fresh ones.
An ?x used in one rule is meant to be independent of one used in another. In order
to avoid conflicts with existing bindings, change-vars is called each time a rule
is used.

For the convenienceof the user, it is possible to use (underscore) as awildcard
variable in rules. When a rule is defined, the function rep is called to change
each underscore into a real variable. Underscores can also be used in the queries
given to with-inference.
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24.3 Rules

This section shows how to write rules for our Prolog. To start with, here are the
two rules from Section 24.1:

(<- (painter ?x) (hungry ?x)
(smells-of ?x turpentine))

(<- (hungry ?x) (or (gaunt ?x) (eats-ravenously ?x)))

If we also assert the following facts:

(<- (gaunt raoul))
(<- (smells-of raoul turpentine))
(<- (painter rubens))

Then we will get the bindings they generate according to the order in which they
were defined:

> (with-inference (painter ?x)
(print ?x))

RAOUL
RUBENS
@

The with-inferencemacro has exactly the same restrictions on variable binding
as with-answer. (See Section 19.4.)

We can write rules which imply that facts of a given form are true for all
possible bindings. This happens, for example, when some variable occurs in the
head of a rule but not in the body. The rule

(<- (eats ?x ?f) (glutton ?x))

Says that if ?x is a glutton, then ?x eats everything. Because ?f doesn’t occur in
the body, we can prove any fact of the form (eats ?x y) simply by establishing
a binding for ?x. If we make a query with a literal value as the second argument
to eats,

> (<- (glutton hubert))
7
> (with-inference (eats ?x spinach)

(print ?x))
HUBERT
@

then any literal value will work. When we give a variable as the second argument:
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> (with-inference (eats ?x ?y)
(print (list ?x ?y)))

(HUBERT #:G229)
@

we get a gensym back. Returning a gensym as the binding of a variable in the
query is a way of signifying that any value would be true there. Programs can be
written explicitly to take advantage of this convention:

> (progn
(<- (eats monster bad-children))
(<- (eats warhol candy)))

9
> (with-inference (eats ?x ?y)

(format t "~A eats ~A.~%"
?x
(if (gensym? ?y) ’everything ?y)))

HUBERT eats EVERYTHING.
MONSTER eats BAD-CHILDREN.
WARHOL eats CANDY.
@

Finally, if we want to specify that facts of a certain form will be true for any
arguments, we make the body a conjunction with no arguments. The expression
(and) will always behave as a true fact. In the macro <- (Figure 24.4), the body
defaults to (and), so for such rules we can simply omit the body:

> (<- (identical ?x ?x))
10
> (with-inference (identical a ?x)

(print ?x))
A
@

For readers with some knowledge of Prolog, Figure 24.6 shows the translation
from Prolog syntax into that of our program. The traditional first Prolog program
is append, which would be written as at the end of Figure 24.6. In an instance of
appending, two shorter lists are joined together to form a single larger one. Any
two of these lists define what the third should be. The Lisp function append takes
the two shorter lists as arguments and returns the longer one. Prolog append is
more general; the two rules in Figure 24.6 define a programwhich, given any two
of the lists involved, can find the third.
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Our syntax differs from traditional Prolog syntax as follows:

1. Variables are represented by symbols beginning with question marks
instead of capital letters. Common Lisp is not case-sensitive by default,
so it would be more trouble than it’s worth to use capitals.

2. [ ] becomes nil.

3. Expressions of the form [x | y] become (x . y).

4. Expressions of the form [x, y, ...] become (x y ...).

5. Predicates are moved inside parentheses, and no commas separate argu-
ments: pred(x, y, ...) becomes (pred x y ...).

Thus the Prolog definition of append:

append([ ], Xs, Xs).
append([X | Xs], Ys, [X | Zs]) <- append(Xs, Ys, Zs).

becomes:

(<- (append nil ?xs ?xs))
(<- (append (?x . ?xs) ?ys (?x . ?zs))

(append ?xs ?ys ?zs))

Figure 24.6: Prolog syntax equivalence.

> (with-inference (append ?x (c d) (a b c d))
(format t "Left: ~A~%" ?x))

Left: (A B)
@
> (with-inference (append (a b) ?x (a b c d))

(format t "Right: ~A~%" ?x))
Right: (C D)
@
> (with-inference (append (a b) (c d) ?x)

(format t "Whole: ~A~%" ?x))
Whole: (A B C D)
@

Not only that, but given only the last list, it can find all the possibilities for the
first two:
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> (with-inference (append ?x ?y (a b c))
(format t "Left: ~A Right: ~A~%" ?x ?y))

Left: NIL Right: (A B C)
Left: (A) Right: (B C)
Left: (A B) Right: (C)
Left: (A B C) Right: NIL
@

The case of append points to a great difference between Prolog and other
languages. A collection of Prolog rules does not have to yield a specific value. It
can instead yield constraints, which, when combined with constraints generated
by other parts of the program, yield a specific value. For example, if we define
member thus:

(<- (member ?x (?x . ?rest)))
(<- (member ?x (_ . ?rest)) (member ?x ?rest))

then we can use it to test for list membership, as we would use the Lisp function
member:

> (with-inference (member a (a b)) (print t))
T
@

but we can also use it to establish a constraint of membership, which, combined
with other constraints, yields a specific list. If we also have a predicate cara

(<- (cara (a _)))

which is true of any two-element list whose car is a, then between that and member
we have enough constraint for Prolog to construct a definite answer:

> (with-inference (and (cara ?lst) (member b ?lst))
(print ?lst))

(A B)
@

This is a rather trivial example, but bigger programs can be constructed on the
same principle. Whenever we want to program by combining partial solutions,
Prolog may be useful. Indeed, a surprising variety of problems can be expressed
in such terms: Figure 24.14, for example, shows a sorting algorithm expressed as
a collection of constraints on the solution.
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24.4 The Need for Nondeterminism

Chapter 22 explained the relation between deterministic and nondeterministic
search. A deterministic search program could take a query and generate all the
solutions which satisfied it. A nondeterministic search program will use choose
to generate solutions one at a time, and if more are needed, will call fail to restart
the search.

When we have rules which all yield finite sets of bindings, and we want all of
them at once, there is no reason to prefer nondeterministic search. The difference
between the two strategies becomes apparent when we have queries which would
generate an infinite number of bindings, of which we want a finite subset. For
example, the rules

(<- (all-elements ?x nil))
(<- (all-elements ?x (?x . ?rest))

(all-elements ?x ?rest))

imply all the facts of the form (all-elements x y), where every member of y
is equal to x. Without backtracking we could handle queries like:

(all-elements a (a a a))
(all-elements a (a a b))
(all-elements ?x (a a a))

However, the query (all-elements a ?x) is satisfied for an infinite number of
possible ?x: nil, (a), (a a), and so on. If we try to generate answers for this
query by iteration, the iteration will never terminate. Even if we only wanted one
of the answers, we would never get a result from an implementation which had to
generate all the bindings for the query before it could begin to iterate through the
Lisp expressions following it.

This is why with-inference interleaves the generation of bindings with the
evaluation of its body. Where queries could lead to an infinite number of answers,
the only successful approach will be to generate answers one at a time, and return
to pick up new ones by restarting the suspended search. Because it uses choose
and fail, our program can handle this case:

> (block nil
(with-inference (all-elements a ?x)

(if (= (length ?x) 3)
(return ?x)
(princ ?x))))

NIL(A)(A A)
(A A A)
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Like any other Prolog implementation, ours simulates nondeterminism by
doing depth-first search with backtracking. In theory, “logic programs” run under
true nondeterminism. In fact, Prolog implementations always use depth-first
search. Far from being inconvenienced by this choice, typical Prolog programs
depend on it. In a truly nondeterministic world, the query

(and (all-elements a ?x) (length ?x 3))

has an answer, but it takes you arbitrarily long to find out what it is.
Not only does Prolog use the depth-first implementation of nondeterminism,

it uses a version equivalent to that defined on page 293. As explained there, this
implementation is not always guaranteed to terminate. So Prolog programmers
must take deliberate steps to avoid loops in the search space. For example, if we
had defined member in the reverse order

(<- (member ?x (_ . ?rest)) (member ?x ?rest))
(<- (member ?x (?x . ?rest)))

then logically it would have the same meaning, but as a Prolog program it would
have a different effect. The original definition of member would yield an infinite
stream of answers in response to the query (member ’a ?x), but the reversed
definition will yield an infinite recursion, and no answers.

24.5 New Implementation

In this section we will see another instance of a familiar pattern. In Section 18.4,
we found after writing the initial version that if-match could be made much
faster. By taking advantage of information known at compile-time, we were
able to write a new version which did less work at runtime. We saw the same
phenomenon on a larger scale in Chapter 19. Our query interpreter was replaced
by an equivalent but faster version. The same thing is about to happen to our
Prolog interpreter.

Figures 24.7, 24.8, and 24.10 define Prolog in a different way. The macro
with-inference used to be just the interface to a Prolog interpreter. Now it is
most of the program. The new program has the same general shape as the old one,
but of the functions defined in Figure 24.8, only prove is called at runtime. The
others are called by with-inference in order to generate its expansion.

Figure 24.7 shows the new definition of with-inference. As in if-match
or with-answer, pattern variables are initially bound to gensyms to indicate
that they haven’t yet been assigned real values by matching. Thus the function
varsym?, which match and fullbind use to detect variables, has to be changed
to look for gensyms.
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(defmacro with-inference (query &rest body)
(let ((vars (vars-in query #’simple?)) (gb (gensym)))
‘(with-gensyms ,vars

(setq *paths* nil)
(=bind (,gb) ,(gen-query (rep_ query))
(let ,(mapcar #’(lambda (v)

‘(,v (fullbind ,v ,gb)))
vars)

,@body)
(fail)))))

(defun varsym? (x)
(and (symbolp x) (not (symbol-package x))))

Figure 24.7: New toplevel macro.

To generate the code to establish bindings for the query, with-inference
calls gen-query (Figure 24.8). The first thing gen-query does is look to see
whether its first argument is a complex query beginning with an operator like and
or or. This process continues recursively until it reaches simple queries, which
are expanded into calls to prove. In the original implementation, such logical
structure was analyzed at runtime. A complex expression occurring in the body
of a rule had to be analyzed anew each time the rule was used. This is wasteful
because the logical structure of rules and queries is known beforehand. The new
implementation decomposes complex expressions at compile-time.

As in the previous implementation, a with-inference expression expands
into codewhich iterates through the Lisp code following the querywith the pattern
variables bound to successive values established by the rules. The expansion of
with-inference concludes with a fail, which will restart any saved states.

The remaining functions in Figure 24.8 generate expansions for complex
queries—queries joined together by operators like and, or, and not. If we have
a query like

(and (big ?x) (red ?x))

then we want the Lisp code to be evaluated only with those ?x for which both
conjuncts can be proved. So to generate the expansion of an and, we nest
the expansion of the second conjunct within that of the first. When (big ?x)
succeeds we try (red ?x), and if that succeeds, we evaluate the Lisp expressions.
So the whole expression expands as in Figure 24.9.
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(defun gen-query (expr &optional binds)
(case (car expr)
(and (gen-and (cdr expr) binds))
(or (gen-or (cdr expr) binds))
(not (gen-not (cadr expr) binds))
(t ‘(prove (list ’,(car expr)

,@(mapcar #’form (cdr expr)))
,binds))))

(defun gen-and (clauses binds)
(if (null clauses)

‘(=values ,binds)
(let ((gb (gensym)))

‘(=bind (,gb) ,(gen-query (car clauses) binds)
,(gen-and (cdr clauses) gb)))))

(defun gen-or (clauses binds)
‘(choose

,@(mapcar #’(lambda (c) (gen-query c binds))
clauses)))

(defun gen-not (expr binds)
(let ((gpaths (gensym)))
‘(let ((,gpaths *paths*))

(setq *paths* nil)
(choose (=bind (b) ,(gen-query expr binds)

(setq *paths* ,gpaths)
(fail))

(progn
(setq *paths* ,gpaths)
(=values ,binds))))))

(=defun prove (query binds)
(choose-bind r *rules* (=funcall r query binds)))

(defun form (pat)
(if (simple? pat)

pat
‘(cons ,(form (car pat)) ,(form (cdr pat)))))

Figure 24.8: Compilation of queries.
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(with-inference (and (big ?x) (red ?x))
(print ?x))

expands into:

(with-gensyms (?x)
(setq *paths* nil)
(=bind (#:g1) (=bind (#:g2) (prove (list ’big ?x) nil)

(=bind (#:g3) (prove (list ’red ?x) #:g2)
(=values #:g3)))

(let ((?x (fullbind ?x #:g1)))
(print ?x))

(fail)))

Figure 24.9: Expansion of a conjunction.

An and means nesting; an or means a choose. Given a query like

(or (big ?x) (red ?x))

wewant the Lisp expressions to be evaluated for values of ?x established by either
subquery. The function gen-or expands into a choose over the gen-query of
each of the arguments. As for not, gen-not is almost identical to prove-not
(Figure 24.3).

Figure 24.10 shows the code for defining rules. Rules are translated directly
into Lisp code generated by rule-fn. Since <- now expands rules into Lisp code,
compiling a file full of rule definitions will cause rules to be compiled functions.

When a rule-function is sent a pattern, it tries to match it with the head of
the rule it represents. If the match succeeds, the rule-function will then try to
establish bindings for the body. This task is essentially the same as that done by
with-inference, and in fact rule-fn ends by calling gen-query. The rule-
function eventually returns the bindings established for the variables occurring in
the head of the rule.

24.6 Adding Prolog Features

The code already presented can run most “pure” Prolog programs. The final step
is to add extras like cuts, arithmetic, and I/O.

Putting a cut in a Prolog rule causes the search tree to be pruned. Ordinarily,
when our program encounters a fail, it backtracks to the last choice point. The
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(defvar *rules* nil)

(defmacro <- (con &rest ant)
(let ((ant (if (= (length ant) 1)

(car ant)
‘(and ,@ant))))

‘(length (conc1f *rules*
,(rule-fn (rep_ ant) (rep_ con))))))

(defun rule-fn (ant con)
(with-gensyms (val win fact binds)
‘(=lambda (,fact ,binds)

(with-gensyms ,(vars-in (list ant con) #’simple?)
(multiple-value-bind

(,val ,win)
(match ,fact

(list ’,(car con)
,@(mapcar #’form (cdr con)))

,binds)
(if ,win

,(gen-query ant val)
(fail)))))))

Figure 24.10: Code for defining rules.

implementation of choose in Section 22.4 stores choice points in the global variable
*paths*. Calling fail restarts the search at the most recent choice point, which
is the car of *paths*. Cuts introduce a new complication. When the program
encounters a cut, it will throw away some of the most recent choice points stored
on *paths*—specifically, all those stored since the last call to prove.

The effect is to make rules mutually exclusive. We can use cuts to get the
effect of a case statement in Prolog programs. For example, if we define minimum
this way:

(<- (minimum ?x ?y ?x) (lisp (<= ?x ?y)))
(<- (minimum ?x ?y ?y) (lisp (> ?x ?y)))

it will work correctly, but inefficiently. Given the query

(minimum 1 2 ?x)
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Prolog will immediately establish that ?x = 1 from the first rule. A human would
stop here, but the program will waste time looking for more answers from the
second rule, because it has been given no indication that the two rules are mutually
exclusive. On the average, this version of minimum will do 50% more work than
it needs to. We can fix the problem by adding a cut after the first test:

(<- (minimum ?x ?y ?x) (lisp (<= ?x ?y)) (cut))
(<- (minimum ?x ?y ?y))

Now when Prolog has finished with the first rule, it will fail all the way out of the
query instead of moving on to the next rule.

It is trivially easy to modify our program to handle cuts. On each call to
prove, the current state of *paths* is passed as a parameter. If the program
encounters a cut, it just sets *paths* back to the old value passed in the parameter.
Figures 24.11 and 24.12 show the code which has to be modified to handle cuts.
(Changed lines are marked with semicolons. Not all the changes are due to cuts.)

Cuts which merely make a program more efficient are called green cuts. The
cut in minimum was a green cut. Cuts which make a program behave differently
are called red cuts. For example, if we define the predicate artist as follows:

(<- (artist ?x) (sculptor ?x) (cut))
(<- (artist ?x) (painter ?x))

the result is that, if there are any sculptors, then the query can end there. If there
are no sculptors then painters get to be considered as artists:

> (progn (<- (painter ’klee))
(<- (painter ’soutine)))

4
> (with-inference (artist ?x)

(print ?x))
KLEE
SOUTINE
@

But if there are sculptors, the cut stops inference with the first rule:

> (<- (sculptor ’hepworth))
5
> (with-inference (artist ?x)

(print ?x))
HEPWORTH
@
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(defun rule-fn (ant con)
(with-gensyms (val win fact binds paths) ;
‘(=lambda (,fact ,binds ,paths) ;

(with-gensyms ,(vars-in (list ant con) #’simple?)
(multiple-value-bind

(,val ,win)
(match ,fact

(list ’,(car con)
,@(mapcar #’form (cdr con)))

,binds)
(if ,win

,(gen-query ant val paths) ;
(fail)))))))

(defmacro with-inference (query &rest body)
(let ((vars (vars-in query #’simple?)) (gb (gensym)))
‘(with-gensyms ,vars

(setq *paths* nil)
(=bind (,gb) ,(gen-query (rep_ query) nil ’*paths*) ;
(let ,(mapcar #’(lambda (v)

‘(,v (fullbind ,v ,gb)))
vars)

,@body)
(fail)))))

(defun gen-query (expr binds paths) ;
(case (car expr)
(and (gen-and (cdr expr) binds paths)) ;
(or (gen-or (cdr expr) binds paths)) ;
(not (gen-not (cadr expr) binds paths)) ;
(lisp (gen-lisp (cadr expr) binds)) ;
(is (gen-is (cadr expr) (third expr) binds)) ;
(cut ‘(progn (setq *paths* ,paths) ;

(=values ,binds))) ;
(t ‘(prove (list ’,(car expr)

,@(mapcar #’form (cdr expr)))
,binds *paths*)))) ;

(=defun prove (query binds paths) ;
(choose-bind r *rules*
(=funcall r query binds paths))) ;

Figure 24.11: Adding support for new operators.
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(defun gen-and (clauses binds paths) ;
(if (null clauses)

‘(=values ,binds)
(let ((gb (gensym)))
‘(=bind (,gb) ,(gen-query (car clauses) binds paths);

,(gen-and (cdr clauses) gb paths))))) ;

(defun gen-or (clauses binds paths) ;
‘(choose

,@(mapcar #’(lambda (c) (gen-query c binds paths)) ;
clauses)))

(defun gen-not (expr binds paths) ;
(let ((gpaths (gensym)))
‘(let ((,gpaths *paths*))

(setq *paths* nil)
(choose (=bind (b) ,(gen-query expr binds paths) ;

(setq *paths* ,gpaths)
(fail))

(progn
(setq *paths* ,gpaths)
(=values ,binds))))))

(defmacro with-binds (binds expr)
‘(let ,(mapcar #’(lambda (v) ‘(,v (fullbind ,v ,binds)))

(vars-in expr))
,expr))

(defun gen-lisp (expr binds)
‘(if (with-binds ,binds ,expr)

(=values ,binds)
(fail)))

(defun gen-is (expr1 expr2 binds)
‘(aif2 (match ,expr1 (with-binds ,binds ,expr2) ,binds)

(=values it)
(fail)))

Figure 24.12: Adding support for new operators.
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⟨rule⟩ : (<- ⟨sentence⟩ ⟨query⟩)
⟨query⟩ : (not ⟨query⟩)

: (and ⟨query⟩*)
: (lisp ⟨lisp expression⟩)
: (is ⟨variable⟩ ⟨lisp expression⟩)
: (cut)
: (fail)
: ⟨sentence⟩

⟨sentence⟩ : (⟨symbol⟩ ⟨argument⟩*)
⟨argument⟩ : ⟨variable⟩

: ⟨lisp expression⟩
⟨variable⟩ : ?⟨symbol⟩

Figure 24.13: New syntax of rules.

The cut is sometimes used in conjunction with the Prolog fail operator. Our
function fail does exactly the same thing. Putting a cut in a rule makes it like a
one-way street: once you enter, you’re committed to using only that rule. Putting
a cut-fail combination in a rule makes it like a one-way street in a dangerous
neighborhood: once you enter, you’re committed to leaving with nothing. A
typical example is in the implementation of not-equal:

(<- (not-equal ?x ?x) (cut) (fail))
(<- (not-equal ?x ?y))

The first rule here is a trap for impostors. If we’re trying to prove a fact of the
form (not-equal 1 1), it will match with the head of the first rule and thus be
doomed. The query (not-equal 1 2), on the other hand, will not match the
head of the first rule, and will go on to the second, where it succeeds:

> (with-inference (not-equal ’a ’a)
(print t))

@
> (with-inference (not-equal ’(a a) ’(a b))

(print t))
T
@

The code shown in Figures 24.11 and 24.12 also gives our program arithmetic,
I/O, and the Prolog is operator. Figure 24.13 shows the complete syntax of rules
and queries.
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We add arithmetic (andmore) by including a trapdoor to Lisp. Now in addition
to operators like and and or, we have the lisp operator. This may be followed
by any Lisp expression, which will be evaluated with the variables within it bound
to the bindings established for them by the query. If the expression evaluates to
nil, then the lisp expression as a whole is equivalent to a (fail); otherwise it
is equivalent to (and).

As an example of the use of the lisp operator, consider the Prolog definition
of ordered, which is true of lists whose elements are arranged in ascending order:

(<- (ordered (?x)))
(<- (ordered (?x ?y . ?ys))

(lisp (<= ?x ?y))
(ordered (?y . ?ys)))

In English, a list of one element is ordered, and a list of two or more elements is
ordered if the first element of the list is less than or equal to the second, and the
list from the second element on is ordered.

> (with-inference (ordered ’(1 2 3))
(print t))

T
@
> (with-inference (ordered ’(1 3 2))

(print t))
@

By means of the lisp operator we can provide other features offered by
typical Prolog implementations. Prolog I/O predicates can be duplicated by putting
Lisp I/O calls within lisp expressions. The Prolog assert, which as a side-
effect defines new rules, can be duplicated by calling the <- macro within lisp
expressions.

The is operator offers a form of assignment. It takes two arguments, a pattern
and a Lisp expression, and tries to match the pattern with the result returned by the
expression. If the match fails, then the program calls fail; otherwise it proceeds
with the new bindings. Thus, the expression (is ?x 1) has the effect of setting
?x to 1, or more precisely, insisting that ?x be 1. We need is to calculate—for
example, to calculate factorials:

(<- (factorial 0 1))
(<- (factorial ?n ?f)

(lisp (> ?n 0))
(is ?n1 (- ?n 1))
(factorial ?n1 ?f1)
(is ?f (* ?n ?f1)))
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We use this definition by making a query with a number n as the first argument
and a variable as the second:

> (with-inference (factorial 8 ?x)
(print ?x))

40320
@

Note that the variables used in a lisp expression, or in the second argument to
is, must have established bindings for the expression to return a value. This
restriction holds in any Prolog. For example, the query:

(with-inference (factorial ?x 120) ; wrong
(print ?x))

won’t work with this definition of factorial, because ?nwill be unknownwhen
the lisp expression is evaluated. So not all Prolog programs are like append:
many insist, like factorial, that certain of their arguments be real values.

24.7 Examples

This final section shows how to write some example Prolog programs in our◦
implementation. The rules in Figure 24.14 define quicksort. These rules imply
facts of the form (quicksort x y), where x is a list and y is a list of the same
elements sorted in ascending order. Variables may appear in the second argument
position:

> (with-inference (quicksort ’(3 2 1) ?x)
(print ?x))

(1 2 3)
@

An I/O loop is a test for our Prolog, because it makes use of the cut, lisp, and
is operators. The code is shown in Figure 24.15. These rules should be invoked
by trying to prove (echo), with no arguments. That query will match the first
rule, which will bind ?x to the result returned by read, and then try to establish
(echo ?x). The new query can match either of the second two rules. If ?x =
done, then the query will terminate in the second rule. Otherwise the query will
only match the third rule, which prints the value read, and starts the process over
again.
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(setq *rules* nil)

(<- (append nil ?ys ?ys))
(<- (append (?x . ?xs) ?ys (?x . ?zs))

(append ?xs ?ys ?zs))

(<- (quicksort (?x . ?xs) ?ys)
(partition ?xs ?x ?littles ?bigs)
(quicksort ?littles ?ls)
(quicksort ?bigs ?bs)
(append ?ls (?x . ?bs) ?ys))

(<- (quicksort nil nil))

(<- (partition (?x . ?xs) ?y (?x . ?ls) ?bs)
(lisp (<= ?x ?y))
(partition ?xs ?y ?ls ?bs))

(<- (partition (?x . ?xs) ?y ?ls (?x . ?bs))
(lisp (> ?x ?y))
(partition ?xs ?y ?ls ?bs))

(<- (partition nil ?y nil nil))

Figure 24.14: Quicksort.

(<- (echo)
(is ?x (read))
(echo ?x))

(<- (echo ’done)
(cut))

(<- (echo ?x)
(lisp (prog1 t (format t "~A~%" ?x)))
(is ?y (read))
(cut)
(echo ?y))

Figure 24.15: An I/O loop in Prolog.
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Collectively, the rules define a program that will continue to echo what you
type, until you type done:

> (with-inference (echo))
hi
HI
ho
HO
done
@

Programs like this are difficult to read because they subvert the abstract model of
Prolog. It might be easier to understandecho if we look at a literal Lisp translation

(defun echo (&rest args)
(cond ((null args) (echo (read)))

((eq (car args) ’done) nil)
(t (format t "~A~%" (car args))

(echo (read)))))

which in idiomatic Common Lisp would be:

(defun echo (&optional (arg (read)))
(unless (eq arg ’done)
(format t "~A~%" arg)
(echo)))

24.8 The Senses of Compile

The word “compile” has several senses. In the most general sense, to compile is
to transform some abstract description of a program into lower-level code. The
program described in this chapter is certainly a compiler in this sense, because it
translates rules into Lisp functions.

In a more specific sense, to compile is to transform a program into machine
language. Good Common Lisps compile functions into native machine code. As
mentioned on page 25, if code which generates closures is compiled, it will yield
compiled closures. Thus the program described here is a compiler in the stricter
sense as well. In a goodLisp, our Prolog programswill get translated intomachine
language.

However, the program described here is still not a Prolog compiler. For
programming languages there is a still more specific sense of “compile,” and
merely generatingmachine code is not enough to satisfy this definition. Acompiler
for a programming language must optimize as well as translate. For example, if a
Lisp compiler is asked to compile an expression like
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(+ x (+ 2 5))

it should be smart enough to realize that there is no reason to wait until runtime
to evaluate (+ 2 5). The program can be optimized by replacing it with 7, and
instead compiling

(+ x 7)

In our program, all the compiling is done by the Lisp compiler, and it is
looking for Lisp optimizations, not Prolog optimizations. Its optimizations will
be valid ones, but too low-level. The Lisp compiler doesn’t know that the code
it’s compiling is meant to represent rules. While a real Prolog compiler would be
looking for rules that could be transformed into loops, our program is looking for
expressions that yield constants, or closures that could be allocated on the stack.

Embedded languages allow you to make the most of available abstractions,
but they are not magic. If you want to travel all the way from a very abstract
representation to fast machine code, someone still has to tell the computer how to
do it. In this chapter we travelled a good part of that distance with surprisingly
little code, but that is not the same as writing a true Prolog compiler.
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Object-Oriented Lisp

This chapter discusses object-oriented programming in Lisp. Common Lisp
includes a set of operators for writing object-oriented programs. Collectively they
are called the Common Lisp Object System, or CLOS. Here we consider CLOS not
just as a way of writing object-oriented programs, but as a Lisp program itself.
Seeing CLOS in this light is the key to understanding the relation between Lisp and
object-oriented programming.

25.1 Plus ça Change

Object-oriented programmingmeans a change in the way programs are organized.
This change is analogous to the one that has taken place in the distribution of
processor power. In 1970, a multi-user computer system meant one or two big
mainframes connected to a large number of dumb terminals. Now it is more likely
to mean a large number of workstations connected to one another by a network.
The processing power of the system is now distributed among individual users
instead of centralized in one big computer.

Object-oriented programming breaks up traditional programs in much the
same way: instead of having a single program which operates on an inert mass
of data, the data itself is told how to behave, and the program is implicit in the
interactions of these new data “objects.”

For example, suppose we want to write a program to find the areas of two-
dimensional shapes. One way to do this would be to write a single function which
looked at the type of its argument and behaved accordingly:

348
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(defun area (x)
(cond ((rectangle-p x) (* (height x) (width x)))

((circle-p x) (* pi (expt (radius x) 2)))))

The object-oriented approach is to make each object able to calculate its own area.
The area function is broken apart and each clause distributed to the appropriate
class of object; the area method of the rectangle class might be

#’(lambda (x) (* (height x) (width x)))

and for the circle class,

#’(lambda (x) (* pi (expt (radius x) 2)))

In this model, we ask an object what its area is, and it responds according to the
method provided for its class.

The arrival of CLOS might seem a sign that Lisp is changing to embrace the
object-oriented paradigm. Actually, it would be more accurate to say that Lisp
is staying the same to embrace the object-oriented paradigm. But the principles
underlying Lisp don’t have a name, and object-oriented programming does, so ◦
there is a tendency now to describe Lisp as an object-oriented language. It would
be closer to the truth to say that Lisp is an extensible language in which constructs
for object-oriented programming can easily be written.

Since CLOS comes pre-written, it is not false advertising to describe Lisp as
an object-oriented language. However, it would be limiting to see Lisp as merely
that. Lisp is an object-oriented language, yes, but not because it has adopted
the object-oriented model. Rather, that model turns out to be just one more
permutation of the abstractions underlying Lisp. And to prove it we have CLOS, a
program written in Lisp, which makes Lisp an object-oriented language.

The aim of this chapter is to bring out the connection between Lisp and
object-oriented programming by studying CLOS as an example of an embedded
language. This is also a good way to understand CLOS itself: in the end, nothing
explains a language feature more effectively than a sketch of its implementation.
In Section 7.6, macros were explained this way. The next section gives a similar
sketch of how to build object-oriented abstractions on top of Lisp. This program
provides a reference point from which to describe CLOS in Sections 25.3–25.6.

25.2 Objects in Plain Lisp

We can mold Lisp into many different kinds of languages. There is a particularly
direct mapping between the concepts of object-oriented programming and the
fundamental abstractions of Lisp. The size of CLOS tends to obscure this fact. So
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before looking at what we can do with CLOS, let’s see what we can do with plain
Lisp.

Much of what we want from object-oriented programming, we have already
in Lisp. We can get the rest with surprisingly little code. In this section, we will
define an object system sufficient for many real applications in two pages of code.
Object-oriented programming, at a minimum, implies

1. objects which have properties

2. and respond to messages,

3. and which inherit properties and methods from their parents.

In Lisp, there are already several ways to store collections of properties.
One way would be to represent objects as hash-tables, and store their properties
as entries within them. We then have access to individual properties through
gethash:

(gethash ’color obj)

Since functions are data objects, we can store them as properties too. This means
that we can also have methods; to invoke a given method of an object is to funcall
the property of that name:

(funcall (gethash ’move obj) obj 10)

We can define a Smalltalk style message-passing syntax upon this idea:

(defun tell (obj message &rest args)
(apply (gethash message obj) obj args))

so that to tell obj to move 10 we can say

(tell obj ’move 10)

In fact, the only ingredient plain Lisp lacks is inheritance, and we can provide
a rudimentary version of that in six lines of code, by defining a recursive version
of gethash:

(defun rget (obj prop)
(multiple-value-bind (val win) (gethash prop obj)
(if win

(values val win)
(let ((par (gethash ’parent obj)))
(and par (rget par prop))))))



25.2 OBJECTS IN PLAIN LISP 351

(defun rget (obj prop)
(some2 #’(lambda (a) (gethash prop a))

(get-ancestors obj)))

(defun get-ancestors (obj)
(labels ((getall (x)

(append (list x)
(mapcan #’getall

(gethash ’parents x)))))
(stable-sort (delete-duplicates (getall obj))

#’(lambda (x y)
(member y (gethash ’parents x))))))

(defun some2 (fn lst)
(if (atom lst)

nil
(multiple-value-bind (val win) (funcall fn (car lst))

(if (or val win)
(values val win)
(some2 fn (cdr lst))))))

Figure 25.1: Multiple inheritance.

If we just use rget in place of gethash, we will get inherited properties and
methods. We specify an object’s parent thus:

(setf (gethash ’parent obj) obj2)

So far we have only single inheritance—an object can only have one parent.
But we can have multiple inheritance by making the parent property a list, and
defining rget as in Figure 25.1.

With single inheritance, when we wanted to retrieve some property of an
object, we just searched recursively up its ancestors. If the object itself had no
information about the property we wanted, we looked at its parent, and so on.
With multiple inheritance we want to perform the same kind of search, but our job
is complicated by the fact that an object’s ancestors can form a graph instead of a
simple list. We can’t just search this graph depth-first. With multiple parents we
can have the hierarchy shown in Figure 25.2: a is descended from b and c, which
are both descended from d. A depth-first (or rather, height-first) traversal would
go a, b, d, c, d. If the desired property were present in both d and c, we would



352 OBJECT-ORIENTED LISP

Figure 25.2: Multiple paths to a superclass.

get the value stored in d, not the one stored in c. This would violate the principle
that subclasses override the default values provided by their parents.

If wewant to implement the usual idea of inheritance,we should never examine
an object before one of its descendants. In this case, the proper search order would
be a, b, c, d. How can we ensure that the search always tries descendants first?
The simplest way is to assemble a list of all the ancestors of the original object,
sort the list so that no object appears before one of its descendants, and then look
at each element in turn.

This strategy is used by get-ancestors,which returns a properly ordered list
of an object and its ancestors. To sort the list, get-ancestors callsstable-sort◦
instead of sort, to avoid the possibility of reordering parallel ancestors. Once the
list is sorted, rget merely searches for the first object with the desired property.
(The utility some2 is a version of some for use with functions like gethash that
indicate success or failure in the second return value.)

The list of an object’s ancestors goes from most specific to least specific: if
orange is a child of citrus, which is a child of fruit, then the list will go
(orange citrus fruit).

When an object has multiple parents, their precedence goes left-to-right. That
is, if we say

(setf (gethash ’parents x) (list y z))

then y will be considered before z when we look for an inherited property. For
example, we can say that a patriotic scoundrel is a scoundrel first and a patriot
second:

> (setq scoundrel (make-hash-table)
patriot (make-hash-table)
patriotic-scoundrel (make-hash-table))

#<Hash-Table C4219E>
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(defun obj (&rest parents)
(let ((obj (make-hash-table)))
(setf (gethash ’parents obj) parents)
(ancestors obj)
obj))

(defun ancestors (obj)
(or (gethash ’ancestors obj)

(setf (gethash ’ancestors obj) (get-ancestors obj))))

(defun rget (obj prop)
(some2 #’(lambda (a) (gethash prop a))

(ancestors obj)))

Figure 25.3: A function to create objects.

> (setf (gethash ’serves scoundrel) ’self
(gethash ’serves patriot) ’country
(gethash ’parents patriotic-scoundrel)

(list scoundrel patriot))
(#<Hash-Table C41C7E> #<Hash-Table C41F0E>)
> (rget patriotic-scoundrel ’serves)
SELF
T

Let’s make some improvements to this skeletal system. We could begin with a
function to create objects. This function should build a list of an object’s ancestors
at the time the object is created. The current code builds these lists when queries
are made, but there is no reason not to do it earlier. Figure 25.3 defines a function
called obj which creates a new object, storing within it a list of its ancestors. To
take advantage of stored ancestors, we also redefine rget.

Another place for improvement is the syntax of message calls. The tell itself
is unnecessary clutter, and because it makes verbs come second, it means that our
programs can no longer be read like normal Lisp prefix expressions:

(tell (tell obj ’find-owner) ’find-owner)

Wecan get rid of thetell syntax by defining each property name as a function,
as in Figure 25.4. The optional argument meth?, if true, signals that this property
should be treated as a method. Otherwise it will be treated as a slot, and the value
retrieved by rget will simply be returned. Once we have defined the name of
either kind of property,
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(defmacro defprop (name &optional meth?)
‘(progn

(defun ,name (obj &rest args)
,(if meth?

‘(run-methods obj ’,name args)
‘(rget obj ’,name)))

(defsetf ,name (obj) (val)
‘(setf (gethash ’,’,name ,obj) ,val))))

(defun run-methods (obj name args)
(let ((meth (rget obj name)))
(if meth

(apply meth obj args)
(error "No ~A method for ~A." name obj))))

Figure 25.4: Functional syntax.

(defprop find-owner t)

we can refer to it with a function call, and our code will read like Lisp again:

(find-owner (find-owner obj))

Our previous example now becomes somewhat more readable:

> (progn
(setq scoundrel (obj))
(setq patriot (obj))
(setq patriotic-scoundrel (obj scoundrel patriot))
(defprop serves)
(setf (serves scoundrel) ’self)
(setf (serves patriot) ’country)
(serves patriotic-scoundrel))

SELF
T

In the current implementation, an object can have at most one method of a
given name. An object either has its own method, or inherits one. It would be
convenient to have more flexibility on this point, so that we could combine local
and inherited methods. For example, we might want the move method of some
object to be the move method of its parent, but with some extra code run before
or afterwards.
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To allow for such possibilities, we will modify our program to include before-,
after-, and around-methods. Before-methods allow us to say “But first, do this.”
They are called, most specific first, as a prelude to the rest of the method call.
After-methods allow us to say “P.S. Do this too.” They are called, most specific
last, as an epilogue to the method call. Between them, we run what used to be the
whole method, and is now called the primary method. The value of this call is the
one returned, even if after-methods are called later.

Before- and after-methods allow us to wrap new behavior around the call to
the primary method. Around-methods provide a more drastic way of doing the
same thing. If an around-method exists, it will be called instead of the primary
method. Then, at its own discretion, the around-method may itself invoke the
primary method (via call-next, which will be provided in Figure 25.7).

To allow auxiliary methods, we modify run-methods and rget as in Fig-
ures 25.5 and 25.6. In the previous version, when we ran some method of an
object, we ran just one function: the most specific primary method. We ran the
first method we encountered when searching the list of ancestors. With auxiliary
methods, the calling sequence now goes as follows:

1. The most specific around-method, if there is one.

2. Otherwise, in order:

(a) All before-methods, from most specific to least specific.
(b) The most specific primary method (what we used to call).
(c) All after-methods, from least specific to most specific.

Notice also that instead of being a single function, a method becomes a four-
part structure. To define a (primary) method, instead of saying:

(setf (gethash ’move obj) #’(lambda ...))

we say:

(setf (meth-primary (gethash ’move obj)) #’(lambda ...))

For this and other reasons, our next step should be to define a macro for defining
methods.

Figure 25.7 shows the definition of such a macro. The bulk of this code is
taken up with implementing two functions that methods can use to refer to other
methods. Around- and primary methods can use call-next to invoke the next
method, which is the code that would have run if the current method didn’t exist.
For example, if the currently running method is the only around-method, the next



356 OBJECT-ORIENTED LISP

(defstruct meth around before primary after)

(defmacro meth- (field obj)
(let ((gobj (gensym)))
‘(let ((,gobj ,obj))

(and (meth-p ,gobj)
(,(symb ’meth- field) ,gobj)))))

(defun run-methods (obj name args)
(let ((pri (rget obj name :primary)))
(if pri

(let ((ar (rget obj name :around)))
(if ar

(apply ar obj args)
(run-core-methods obj name args pri)))

(error "No primary ~A method for ~A." name obj))))

(defun run-core-methods (obj name args &optional pri)
(multiple-value-prog1
(progn (run-befores obj name args)

(apply (or pri (rget obj name :primary))
obj args))

(run-afters obj name args)))

(defun rget (obj prop &optional meth (skip 0))
(some2 #’(lambda (a)

(multiple-value-bind (val win) (gethash prop a)
(if win

(case meth (:around (meth- around val))
(:primary (meth- primary val))
(t (values val win))))))

(nthcdr skip (ancestors obj))))

Figure 25.5: Auxiliary methods.

method would be the usual sandwich of before-, most specific primary, and after-
methods. Within the most specific primary method, the next method would be the
second most specific primary method. Since the behavior of call-next depends
on where it is called, it is never defined globally with a defun, but is defined
locally within each method defined by defmeth.
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(defun run-befores (obj prop args)
(dolist (a (ancestors obj))
(let ((bm (meth- before (gethash prop a))))
(if bm (apply bm obj args)))))

(defun run-afters (obj prop args)
(labels ((rec (lst)

(when lst
(rec (cdr lst))
(let ((am (meth- after

(gethash prop (car lst)))))
(if am (apply am (car lst) args))))))

(rec (ancestors obj))))

Figure 25.6: Auxiliary methods (continued).

An around- or primary method can use next-p to check whether there is a
next method. If the current method is the primary method of an object with no
parents, for example, there would be no next method. Since call-next yields
an error when there is no next method, next-p should usually be called to test
the waters first. Like call-next, next-p is defined locally within individual
methods.

The newmacro defmeth is used as follows. If we just want to define the area
method of the rectangle object, we say

(setq rectangle (obj))
(defprop height)
(defprop width)
(defmeth (area) rectangle (r)
(* (height r) (width r)))

Now the area of an instance is calculated according to the method of the class:

> (let ((myrec (obj rectangle)))
(setf (height myrec) 2

(width myrec) 3)
(area myrec))

6
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(defmacro defmeth ((name &optional (type :primary))
obj parms &body body)

(let ((gobj (gensym)))
‘(let ((,gobj ,obj))

(defprop ,name t)
(unless (meth-p (gethash ’,name ,gobj))
(setf (gethash ’,name ,gobj) (make-meth)))

(setf (,(symb ’meth- type) (gethash ’,name ,gobj))
,(build-meth name type gobj parms body)))))

(defun build-meth (name type gobj parms body)
(let ((gargs (gensym)))
‘#’(lambda (&rest ,gargs)

(labels
((call-next ()

,(if (or (eq type :primary)
(eq type :around))

‘(cnm ,gobj ’,name (cdr ,gargs) ,type)
’(error "Illegal call-next.")))

(next-p ()
,(case type

(:around
‘(or (rget ,gobj ’,name :around 1)

(rget ,gobj ’,name :primary)))
(:primary
‘(rget ,gobj ’,name :primary 1))

(t nil))))
(apply #’(lambda ,parms ,@body) ,gargs)))))

(defun cnm (obj name args type)
(case type
(:around (let ((ar (rget obj name :around 1)))

(if ar
(apply ar obj args)
(run-core-methods obj name args))))

(:primary (let ((pri (rget obj name :primary 1)))
(if pri

(apply pri obj args)
(error "No next method."))))))

Figure 25.7: Defining methods.
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(defmacro undefmeth ((name &optional (type :primary)) obj)
‘(setf (,(symb ’meth- type) (gethash ’,name ,obj))

nil))

Figure 25.8: Removing methods.

In a more complicated example, suppose we have defined a backup method for
the filesystem object:

(setq filesystem (obj))
(defmeth (backup :before) filesystem (fs)
(format t "Remember to mount the tape.~%"))

(defmeth (backup) filesystem (fs)
(format t "Oops, deleted all your files.~%")
’done)

(defmeth (backup :after) filesystem (fs)
(format t "Well, that was easy.~%"))

The normal sequence of calls will be as follows:

> (backup (obj filesystem))
Remember to mount the tape.
Oops, deleted all your files.
Well, that was easy.
DONE

Later we want to know how long backups take, so we define the following around-
method:

(defmeth (backup :around) filesystem (fs)
(time (call-next)))

Now whenever backup is called on a child of filesystem (unless more specific
around-methods intervene) our around-method will be called. It calls the code
that would ordinarily run in a call to backup, but within a call to time. The value
returned by time will be returned as the value of the call to backup:

> (backup (obj filesystem))
Remember to mount the tape.
Oops, deleted all your files.
Well, that was easy.
Elapsed Time = .01 seconds
DONE
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Once we are finished timing the backups, we will want to remove the around-
method. That can be done by calling undefmeth (Figure 25.8), which takes the
same first two arguments as defmeth:

(undefmeth (backup :around) filesystem)

Another thing we might want to alter is an object’s list of parents. But after
any such change, we should also update the list of ancestors of the object and all
its children. So far, we have no way of getting from an object to its children, so
we must also add a children property.

Figure 25.9 contains code for operating on objects’ parents and children.
Instead of getting at parents and children via gethash, we use the operators
parents and children. The latter is a macro, and therefore transparent to
setf. The former is a function whose inversion is defined by defsetf to be
set-parents, which does everything needed to maintain consistency in the new
doubly-linked world.

To update the ancestors of all the objects in a subtree, set-parents calls
maphier, which is like a mapc for inheritance hierarchies. As mapc calls a
function on every element of a list, maphier calls a function on an object and
all its descendants. Unless they form a proper tree, the function could get called
more than once on some objects. Here this is harmless, because get-ancestors
does the same thing when called multiple times.

Now we can alter the inheritance hierarchy just by using setf on an object’s
parents:

> (progn (pop (parents patriotic-scoundrel))
(serves patriotic-scoundrel))

COUNTRY
T

When the hierarchy is modified, affected lists of children and ancestors will be
updated automatically. (The children are not meant to be manipulated directly,
but they could be if we defined a set-children analogous to set-parents.)
The last function in Figure 25.9 is obj redefined to use the new code.

As a final improvement to our system, we will make it possible to specify
new ways of combining methods. Currently, the only primary method that gets
called is the most specific (though it can call others via call-next). Instead we
might like to be able to combine the results of the primary methods of each of an
object’s ancestors. For example, suppose that my-orange is a child of orange,
which is a child of citrus. If the props method returns (round acidic) for
citrus, (orange sweet) for orange, and (dented) for my-orange, it would
be convenient to be able to make (props my-orange) return the union of all
these values: (dented orange sweet round acidic).
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(defmacro children (obj)
‘(gethash ’children ,obj))

(defun parents (obj)
(gethash ’parents obj))

(defun set-parents (obj pars)
(dolist (p (parents obj))
(setf (children p)

(delete obj (children p))))
(setf (gethash ’parents obj) pars)
(dolist (p pars)
(pushnew obj (children p)))

(maphier #’(lambda (obj)
(setf (gethash ’ancestors obj)

(get-ancestors obj)))
obj)

pars)

(defsetf parents set-parents)

(defun maphier (fn obj)
(funcall fn obj)
(dolist (c (children obj))
(maphier fn c)))

(defun obj (&rest parents)
(let ((obj (make-hash-table)))
(setf (parents obj) parents)
obj))

Figure 25.9: Maintaining parent and child links.

We could have this if we allowedmethods to apply some function to the values
of all the primary methods, instead of just returning the value of the most specific.
Figure 25.10 contains a macro which allows us to define the way methods are
combined, and a new version of run-core-methodswhich can perform method
combination.

We define the form of combination for a method via defcomb, which takes
a method name and a second argument describing the desired combination. Or-
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(defmacro defcomb (name op)
‘(progn

(defprop ,name t)
(setf (get ’,name ’mcombine)

,(case op
(:standard nil)
(:progn ’#’(lambda (&rest args)

(car (last args))))
(t op)))))

(defun run-core-methods (obj name args &optional pri)
(let ((comb (get name ’mcombine)))
(if comb

(if (symbolp comb)
(funcall (case comb (:and #’comb-and)

(:or #’comb-or))
obj name args (ancestors obj))

(comb-normal comb obj name args))
(multiple-value-prog1
(progn (run-befores obj name args)

(apply (or pri (rget obj name :primary))
obj args))

(run-afters obj name args)))))

(defun comb-normal (comb obj name args)
(apply comb

(mapcan #’(lambda (a)
(let* ((pm (meth- primary

(gethash name a)))
(val (if pm

(apply pm obj args))))
(if val (list val))))

(ancestors obj))))

Figure 25.10: Method combination.

dinarily this second argument should be a function. However, it can also be one
of :progn, :and, :or, or :standard. With the former three, primary meth-
ods will be combined as though according to the corresponding operator, while
:standard indicates that we want the traditional way of running methods.
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(defun comb-and (obj name args ancs &optional (last t))
(if (null ancs)

last
(let ((pm (meth- primary (gethash name (car ancs)))))

(if pm
(let ((new (apply pm obj args)))
(and new

(comb-and obj name args (cdr ancs) new)))
(comb-and obj name args (cdr ancs) last)))))

(defun comb-or (obj name args ancs)
(and ancs

(let ((pm (meth- primary (gethash name (car ancs)))))
(or (and pm (apply pm obj args))

(comb-or obj name args (cdr ancs))))))

Figure 25.11: Method combination (continued).

The central function in Figure 25.10 is the new run-core-methods. If the
method being called has no mcombine property, then the method call proceeds as
before. Otherwise the mcombine of the method is either a function (like +) or a
keyword (like :or). In the former case, the function is just applied to a list of
the values returned by all the primary methods.1 In the latter, we use the function
associated with the keyword to iterate over the primary methods.

The operators and and or have to be treated specially, as in Figure 25.11.
They get special treatment not just because they are special forms, but because
they short-circuit evaluation:

> (or 1 (princ "wahoo"))
1

Here nothing is printed because theor returns as soon as it sees a non-nil argument.
Similarly, a primary method subject to or combination should never get called if
a more specific method returns true. To provide such short-circuiting for and and
or, we use the distinct functions comb-and and comb-or.

To implement our previous example, we would write:

(setq citrus (obj))
(setq orange (obj citrus))

1A more sophisticated version of this code could use reduce to avoid consing here.
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(setq my-orange (obj orange))

(defmeth (props) citrus (c) ’(round acidic))
(defmeth (props) orange (o) ’(orange sweet))
(defmeth (props) my-orange (m) ’(dented))

(defcomb props #’(lambda (&rest args) (reduce #’union args)))

after which props would return the union of all the primary method values:2

> (props my-orange)
(DENTED ORANGE SWEET ROUND ACIDIC)

Incidentally, this example suggests a choice that you only havewhen doing object-
oriented programming in Lisp: whether to store information in slots or methods.

Afterward, if we wanted the props method to return to the default behavior,
we just set the method combination back to standard:

> (defcomb props :standard)
NIL
> (props my-orange)
(DENTED)

Note that before- and after-methods only run in standard method combination.
However, around-methods work the same as before.

The program presented in this section is intended as a model, not as a real
foundation for object-oriented programming. It was written for brevity rather
than efficiency. However, it is at least a working model, and so could be used for
experiments and prototypes. If you do want to use the program for such purposes,
one minor change would make it much more efficient: don’t calculate or store
ancestor lists for objects with only one parent.

25.3 Classes and Instances

The program in the previous section was written to resemble CLOS as closely as
such a small program could. By understanding it we are already a fair way towards
understanding CLOS. In the next few sections we will examine CLOS itself.

In our sketch, we made no syntactic distinction between classes and instances,
or between slots and methods. In CLOS, we use the defclass macro to define a
class, and we declare the slots in a list at the same time:

2Since the combination function for props calls union, the list elements will not necessarily be
in this order.
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(defclass circle ()
(radius center))

This expression says that the circle class has no superclasses, and two slots,
radius and center. We can make an instance of the circle class by saying:

(make-instance ’circle)

Unfortunately, we have defined no way of referring to the slots of a circle, so
any instance we make is going to be rather inert. To get at a slot we define an
accessor function for it:

(defclass circle ()
((radius :accessor circle-radius)
(center :accessor circle-center)))

Now if we make an instance of a circle, we can set its radius and center slots
by using setf with the corresponding accessor functions:

> (setf (circle-radius (make-instance ’circle)) 2)
2

We can do this kind of initialization right in the call to make-instance if we
define the slots to allow it:

(defclass circle ()
((radius :accessor circle-radius :initarg :radius)
(center :accessor circle-center :initarg :center)))

The :initarg keyword in a slot definition says that the following argument should
become a keyword parameter in make-instance. The value of the keyword
parameter will become the initial value of the slot:

> (circle-radius (make-instance ’circle
:radius 2
:center ’(0 . 0)))

2

By declaring an :initform, we can also define slots which initialize them-
selves. The visible slot of the shape class

(defclass shape ()
((color :accessor shape-color :initarg :color)
(visible :accessor shape-visible :initarg :visible

:initform t)))
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will be set to t by default:

> (shape-visible (make-instance ’shape))
T

If a slot has both an initarg and an initform, the initarg takes precedence when it
is specified:

> (shape-visible (make-instance ’shape :visible nil))
NIL

Slots are inherited by instances and subclasses. If a class has more than
one superclass, it inherits the union of their slots. So if we define the class
screen-circle to be a subclass of both circle and shape,

(defclass screen-circle (circle shape)
nil)

then instances of screen-circle will have four slots, two inherited from each
grandparent. Note that a class does not have to create any new slots of its own; this
class exists just to provide something instantiable that inherits from both circle
and shape.

The accessors and initargs work for instances of screen-circle just as they
would for instances of circle or shape:

> (shape-color (make-instance ’screen-circle
:color ’red :radius 3))

RED

We can cause every screen-circle to have some default initial color by
specifying an initform for this slot in the defclass:

(defclass screen-circle (circle shape)
((color :initform ’purple)))

Now instances of screen-circlewill be purple by default,

> (shape-color (make-instance ’screen-circle))
PURPLE

though it is still possible to initialize the slot otherwise by giving an explicit
:color initarg.

In our sketch of object-oriented programming, instances inherited values di-
rectly from the slots in their parent classes. In CLOS, instances do not have slots
in the same way that classes do. We define an inherited default for instances by
defining an initform in the parent class. In a way, this is more flexible, because as
well as being a constant, an initform can be an expression that returns a different
value each time it is evaluated:
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(defclass random-dot ()
((x :accessor dot-x :initform (random 100))
(y :accessor dot-y :initform (random 100))))

Each time we make an instance of a random-dot its x- and y-position will be a
random integer between 0 and 99:

> (mapcar #’(lambda (name)
(let ((rd (make-instance ’random-dot)))
(list name (dot-x rd) (dot-y rd))))

’(first second third))
((FIRST 25 8) (SECOND 26 15) (THIRD 75 59))

In our sketch, we also made no distinction between slots whose values were
to vary from instance to instance, and those which were to be constant across the
whole class. In CLOS we can specify that some slots are to be shared—that is,
their value is the same for every instance. We do this by declaring the slot to
have :allocation :class. (The alternative is for a slot to have :allocation
:instance, but since this is the default there is no need to say so explicitly.) For
example, if all owls are nocturnal, then we can make the nocturnal slot of the
owl class a shared slot, and give it the initial value t:

(defclass owl ()
((nocturnal :accessor owl-nocturnal

:initform t
:allocation :class)))

Now every instance of the owl class will inherit this slot:

> (owl-nocturnal (make-instance ’owl))
T

If we change the “local” value of this slot in an instance, we are actually altering
the value stored in the class:

> (setf (owl-nocturnal (make-instance ’owl)) ’maybe)
MAYBE
> (owl-nocturnal (make-instance ’owl))
MAYBE

This could cause some confusion, so we might like to make such a slot read-
only. When we define an accessor function for a slot, we create a way of both
reading and writing the slot’s value. If we want the value to be readable but
not writable, we can do it by giving the slot just a reader function, instead of a
full-fledged accessor function:
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(defclass owl ()
((nocturnal :reader owl-nocturnal

:initform t
:allocation :class)))

Now attempts to alter the nocturnal slot of an instance will generate an error:

> (setf (owl-nocturnal (make-instance ’owl)) nil)
>>Error: The function (SETF OWL-NOCTURNAL) is undefined.

25.4 Methods

Our sketch emphasized the similarity between slots and methods in a language
which provides lexical closures. In our program, a primary method was stored
and inherited in the same way as a slot value. The only difference between a slot
and a method was that defining a name as a slot by

(defprop area)

made area a function which would simply retrieve and return a value, while
defining it as a method by

(defprop area t)

made area a function which would, after retrieving a value, funcall it on its
arguments.

In CLOS the functional units are still called methods, and it is possible to define
them so that they each seem to be a property of some class. Here we define an
area method for the circle class:

(defmethod area ((c circle))
(* pi (expt (circle-radius c) 2)))

The parameter list for this method says that it is a function of one argument which
applies to instances of the circle class.

We invoke this method like a function, just as in our sketch:

> (area (make-instance ’circle :radius 1))
3.14...

We can also define methods that take additional arguments:

(defmethod move ((c circle) dx dy)
(incf (car (circle-center c)) dx)
(incf (cdr (circle-center c)) dy)
(circle-center c))
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If we call this method on an instance of circle, its center will be shifted by
⟨dx,dy⟩:

> (move (make-instance ’circle :center ’(1 . 1)) 2 3)
(3 . 4)

The value returned by the method reflects the circle’s new position.
As in our sketch, if there is a method for the class of an instance, and for

superclasses of that class, the most specific one runs. So if unit-circle is a
subclass of circle, with the following area method

(defmethod area ((c unit-circle)) pi)

then this method, rather than the more general one, will run when we call area
on an instance of unit-circle.

When a class has multiple superclasses, their precedence runs left to right. By
defining the class patriotic-scoundrel as follows

(defclass scoundrel nil nil)
(defclass patriot nil nil)
(defclass patriotic-scoundrel (scoundrel patriot) nil)

we specify that patriotic scoundrels are scoundrels first and patriots second. When
there is an applicable method for both superclasses,

(defmethod self-or-country? ((s scoundrel))
’self)

(defmethod self-or-country? ((p patriot))
’country)

the method of the scoundrel class will run:

> (self-or-country? (make-instance ’patriotic-scoundrel))
SELF

The examples so far maintain the illusion that CLOS methods are methods of
some object. In fact, they are something more general. In the parameter list of
the move method, the element (c circle) is called a specialized parameter; it
says that this method applies when the first argument to move is an instance of the
circle class. In a CLOSmethod,more than one parameter can be specialized. The
following method has two specialized and one optional unspecialized parameter:
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(defmethod combine ((ic ice-cream) (top topping)
&optional (where :here))

(append (list (name ic) ’ice-cream)
(list ’with (name top) ’topping)
(list ’in ’a

(case where
(:here ’glass)
(:to-go ’styrofoam))

’dish)))

It is invokedwhen the first two arguments to combine are instances of ice-cream
and topping, respectively. If we define some minimal classes to instantiate

(defclass stuff () ((name :accessor name :initarg :name)))
(defclass ice-cream (stuff) nil)
(defclass topping (stuff) nil)

then we can define and run this method:

> (combine (make-instance ’ice-cream :name ’fig)
(make-instance ’topping :name ’olive)
:here)

(FIG ICE-CREAM WITH OLIVE TOPPING IN A GLASS DISH)

When methods specialize more than one of their parameters, it is difficult
to continue to regard them as properties of classes. Does our combine method
belong to the ice-cream class or the topping class? In CLOS, the model of
objects responding to messages simply evaporates. This model seems natural so
long as we invoke methods by saying something like:

(tell obj ’move 2 3)

Then we are clearly invoking the move method of obj. But once we drop this
syntax in favor of a functional equivalent:

(move obj 2 3)

then we have to define move so that it dispatches on its first argument—that is,
looks at the type of the first argument and calls the appropriate method.

Once we have taken this step, the question arises: why only allow dispatching
on the first argument? CLOS answers: why indeed? In CLOS, methods can
specialize any number of their parameters—and not just on user-defined classes,
but on Common Lisp types,3 and even on individual objects. Here is a combine
method that applies to strings:

3Or more precisely, on the type-like classes that CLOS defines in parallel with the Common Lisp
type hierarchy.
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(defmethod combine ((s1 string) (s2 string) &optional int?)
(let ((str (concatenate ’string s1 s2)))
(if int? (intern str) str)))

Which means not only that methods are no longer properties of classes, but that
we can use methods without defining classes at all.

> (combine "I am not a " "cook.")
"I am not a cook."

Here the second parameter is specialized on the symbol palindrome:

(defmethod combine ((s1 sequence) (x (eql ’palindrome))
&optional (length :odd))

(concatenate (type-of s1)
s1
(subseq (reverse s1)

(case length (:odd 1) (:even 0)))))

This particular method makes palindromes of any kind of sequence elements:4

> (combine ’(able was i ere) ’palindrome)
(ABLE WAS I ERE I WAS ABLE)

At this point we no longer have object-oriented programming, but something
more general. CLOS is designed with the understanding that beneath methods
there is this concept of dispatch, which can be done on more than one argument,
and can be based on more than an argument’s class. When methods are built upon
this more general notion, they become independent of individual classes. Instead
of adhering conceptually to classes, methods now adhere to other methods with
the same name. In CLOS such a clump of methods is called a generic function. All
our combinemethods implicitly define the generic function combine.

We can define generic functions explicitly with the defgeneric macro. It
is not necessary to call defgeneric to define a generic function, but it can be a
convenient place to put documentation, or some sort of safety-net for errors. Here
we do both:

(defgeneric combine (x y &optional z)
(:method (x y &optional z)

"I can’t combine these arguments.")
(:documentation "Combines things."))

4In one (otherwise excellent) Common Lisp implementation, concatenate will not accept cons
as its first argument, so this call will not work.
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Since the method given here for combine doesn’t specialize any of its arguments,
it will be the one called in the event no other method is applicable.

> (combine #’expt "chocolate")
"I can’t combine these arguments."

Before, this call would have generated an error.
Generic functions impose one restriction that we don’t have when methods

are properties of objects: when all methods of the same name get joined into one
generic function, their parameter lists must agree. That’s why all our combine
methods had an additional optional parameter. After defining the first combine
method to take up to three arguments, it would have caused an error if we attempted
to define another which only took two.

CLOS requires that the parameter lists of all methods with the same name be
congruent. Two parameter lists are congruent if they have the same number of
required parameters, the same number of optional parameters, and compatible use
of &rest and &key. The actual keyword parameters accepted by differentmethods
need not be the same, but defgeneric can insist that all its methods accept a
certain minimal set. The following pairs of parameter lists are all congruent:

(x) (a)
(x &optional y) (a &optional b)
(x y &rest z) (a b &rest c)
(x y &rest z) (a b &key c d)

and the following pairs are not:

(x) (a b)
(x &optional y) (a &optional b c)
(x &optional y) (a &rest b)
(x &key x y) (a)

Redefining methods is just like redefining functions. Since only required
parameters can be specialized, each method is uniquely identified by its generic
function and the types of its required parameters. If we define another method
with the same specializations, it overwrites the original one. So by saying:

(defmethod combine ((x string) (y string)
&optional ignore)

(concatenate ’string x " + " y))

we redefine what combine does when its first two arguments are strings.
Unfortunately, if instead of redefining a method we want to remove it, there

is no built-in converse of defmethod. Fortunately, this is Lisp, so we can write
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(defmacro undefmethod (name &rest args)
(if (consp (car args))

(udm name nil (car args))
(udm name (list (car args)) (cadr args))))

(defun udm (name qual specs)
(let ((classes (mapcar #’(lambda (s)

‘(find-class ’,s))
specs)))

‘(remove-method (symbol-function ’,name)
(find-method (symbol-function ’,name)

’,qual
(list ,@classes)))))

Figure 25.12: Macro for removing methods.

one. The details of how to remove a method by hand are summarized in the
implementation of undefmethod in Figure 25.12. We use this macro by giving
arguments similar to those we would give to defmethod, except that instead of
giving a whole parameter list as the second or third argument, we give just the
class-names of the required parameters. So to remove the combine method for
two strings, we say:

(undefmethod combine (string string))

Unspecialized arguments are implicitly of class t, so if we had defined a method
with required but unspecialized parameters:

(defmethod combine ((fn function) x &optional y)
(funcall fn x y))

we could get rid of it by saying

(undefmethod combine (function t))

If we want to remove a whole generic function, we can do it the same way we
would remove the definition of any function, by calling fmakunbound:

(fmakunbound ’combine)
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25.5 Auxiliary Methods and Combination

Auxiliary methods worked in our sketch basically as they do in CLOS. So far we
have seen only primary methods, but we can also have before-, after- and around-
methods. Such auxiliary methods are defined by putting a qualifying keyword
after the method name in the call to defmethod. If we define a primary speak
method for the speaker class as follows:

(defclass speaker nil nil)

(defmethod speak ((s speaker) string)
(format t "~A" string))

Then calling speakwith an instance of speaker just prints the second argument:

> (speak (make-instance ’speaker)
"life is not what it used to be")

life is not what it used to be
NIL

By defining a subclass intellectual which wraps before- and after-methods
around the primary speak method,

(defclass intellectual (speaker) nil)

(defmethod speak :before ((i intellectual) string)
(princ "Perhaps "))

(defmethod speak :after ((i intellectual) string)
(princ " in some sense"))

we can create a subclass of speakers which always have the last (and the first)
word:

> (speak (make-instance ’intellectual)
"life is not what it used to be")

Perhaps life is not what it used to be in some sense
NIL

In standard method combination, the methods are called as described in our
sketch: all the before-methods, most specific first, then the most specific primary
method, then all the after-methods, most specific last. So if we define before- or
after-methods for the speaker superclass,
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(defmethod speak :before ((s speaker) string)
(princ "I think "))

they will get called in the middle of the sandwich:

> (speak (make-instance ’intellectual)
"life is not what it used to be")

Perhaps I think life is not what it used to be in some sense
NIL

Regardless of what before- or after-methods get called, the value returned by the
generic function is the value of the most specific primary method—in this case,
the nil returned by format.

This changes if there are around-methods. If one of the classes in an object’s
family tree has an around-method—ormore precisely, if there is an around-method
specialized for the arguments passed to the generic function—the around-method
will get called first, and the rest of the methods will only run if the around-method
decides to let them. As in our sketch, an around- or primary method can invoke
the next method by calling a function: the function we defined as call-next is
in CLOS called call-next-method. There is also a next-method-p, analogous
to our next-p. With around-methodswe can define another subclass of speaker
which is more circumspect:

(defclass courtier (speaker) nil)

(defmethod speak :around ((c courtier) string)
(format t "Does the King believe that ~A? " string)
(if (eq (read) ’yes)

(if (next-method-p) (call-next-method))
(format t "Indeed, it is a preposterous idea.~%"))

’bow)

When the first argument to speak is an instance of the courtier class, the
courtier’s tongue is now guarded by the around-method:

> (speak (make-instance ’courtier) "kings will last")
Does the King believe that kings will last? yes
I think kings will last
BOW
> (speak (make-instance ’courtier) "the world is round")
Does the King believe that the world is round? no
Indeed, it is a preposterous idea.
BOW
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Note that, unlike before- and after-methods, the value returned by the around-
method is returned as the value of the generic function.

Generally, methods are run as in this outline, which is reprinted from Sec-
tion 25.2:

1. The most specific around-method, if there is one.

2. Otherwise, in order:

(a) All before-methods, from most specific to least specific.
(b) The most specific primary method.
(c) All after-methods, from least specific to most specific.

This way of combining methods is called standard method combination. As in
our sketch, it is possible to define methods which are combined in other ways:
for example, for a generic function to return the sum of all the applicable primary
methods.

In our program, we specified how to combine methods by calling defcomb.
By default, methods were combined as in the outline above, but by saying, for
example,

(defcomb price #’+)

we could cause the function price to return the sum of all the applicable primary
methods.

In CLOS this is called operatormethod combination. As in our program, such
method combination can be understood as if it resulted in the evaluation of a Lisp
expression whose first element was some operator, and whose arguments were
calls to the applicable primary methods, in order of specificity. If we defined the
price generic function to combine values with +, and there were no applicable
around-methods, it would behave as though it were defined:

(defun price (&rest args)
(+ (apply ⟨most specific primary method⟩ args)

...
(apply ⟨least specific primary method⟩ args)))

If there are applicable around-methods, they take precedence, just as in standard
method combination. Under operatormethod combination, an around-methodcan
still call the next method via call-next-method. However, primary methods
can no longer use call-next-method. (This is a difference from our sketch,
where we left call-next available to such methods.)
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In CLOS, we can specify the type of method combination to be used by a
generic function by giving the optional :method-combination argument to
defgeneric:

(defgeneric price (x)
(:method-combination +))

Now the pricemethodwill use +method combination. If we define some classes
with prices,

(defclass jacket nil nil)
(defclass trousers nil nil)
(defclass suit (jacket trousers) nil)

(defmethod price + ((jk jacket)) 350)
(defmethod price + ((tr trousers)) 200)

then when we ask for the price of an instance of suit, we get the sum of the
applicable price methods:

> (price (make-instance ’suit))
550

The following symbols can be used as the second argument to defmethod or in
the :method-combination option to defgeneric:

+ and append list max min nconc or progn

By calling define-method-combinationyou can define other kinds of method
combination; see CLTL2, p. 830.

Once you specify the method combination a generic function should use, all
methods for that function must use the same kind. Now it would cause an error if
we tried to use another operator (or :before or :after) as the second argument
in a defmethod for price. If we do want to change the method combination of
price we must remove the whole generic function by calling fmakunbound.

25.6 CLOS and Lisp

CLOS makes a good example of an embedded language. This kind of program
usually brings two rewards:

1. Embedded languages can be conceptually well-integrated with their envi-
ronment, so that within the embedded language we can continue to think of
programs in much the same terms.
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2. Embedded languages can be powerful, because they take advantage of all
the things that the base language already knows how to do.

CLOS wins on both counts. It is very well-integrated with Lisp, and it makes
good use of the abstractions that Lisp has already. Indeed, we can often see Lisp
through CLOS, the way we can see the shapes of objects through a sheet draped
over them.

It is no accident that we usually speak to CLOS through a layer of macros.
Macros do transformation,and CLOS is essentially a programwhich takes programs
built out of object-oriented abstractions, and translates them into programs built
out of Lisp abstractions.

As the first two sections suggested, the abstractions of object-oriented pro-
gramming map so neatly onto those of Lisp that one could almost call the former
a special case of the latter. The objects of object-oriented programming can easily
be implemented as Lisp objects, and their methods as lexical closures. By taking
advantage of such isomorphisms, we were able to provide a rudimentary form of
object-oriented programming in just a few lines of code, and a sketch of CLOS in
a few pages.

CLOS is a great deal larger and more powerful than our sketch, but not so large
as to disguise its roots as an embedded language. Take defmethod as an example.
Though CLTL2 does not mention it explicitly, CLOS methods have all the power of
lexical closures. If we define several methods within the scope of some variable,

(let ((transactions 0))
(defmethod withdraw ((a account) amt)
(incf transactions)
(decf (balance a) amt))

(defmethod deposit ((a account) amt)
(incf transactions)
(incf (balance a) amt))

(defun transactions ()
transactions))

then at runtime they will share access to the variable, just like closures. Methods
can do this because, underneath the syntax, they are closures. In the expansion
of a defmethod, its body appears intact in the body of a sharp-quoted lambda-
expression.

Section 7.6 suggested that it was easier to conceive of how macros work than
what they mean. Likewise, the secret to understanding CLOS is to understand how
it maps onto the fundamental abstractions of Lisp.
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25.7 When to Object

The object-oriented style provides several distinct benefits. Different programs
need these benefits to varying degrees. At one end of the continuum there are
programs—simulations, for example—which are most naturally expressed in the
abstractions of object-oriented programming. At the other end are programs
written in the object-oriented style mainly to make them extensible.

Extensibility is indeed one of the great benefits of the object-oriented style.
Instead of being a single monolithic blob of code, a program is written in small
pieces, each labelled with its purpose. So later when someone else wants to
modify the program, it will be easy to find the part that needs to be changed. If
we want to change the way that objects of type ob are displayed on the screen, we
change the display method of the ob class. If we want to make a new class of
objects like obs but different in a few respects, we can create a subclass of ob; in
the subclass, we change the properties we want, and all the rest will be inherited
by default from the ob class. And if we just want to make a single ob which
behaves differently from the rest, we can create a new child of ob and modify the
child’s properties directly. If the program was written carefully to begin with, we
can make all these types of modifications without even looking at the rest of the
code. From this point of view, an object-oriented program is a program organized
like a table: we can change it quickly and safely by looking up the appropriate
entry.

Extensibility demands the least from the object-oriented style. In fact, it
demands so little that an extensible program might not need to be object-oriented
at all. If the preceding chapters have shown anything, they have shown that Lisp
programs do not have to be monolithic blobs of code. Lisp offers a whole range
of options for extensibility. For example, you could quite literally have a program
organized like a table: a programwhich consisted of a set of closures stored in an
array.

If it’s extensibility you need, you don’t have to choose between an “object-
oriented” and a “traditional” program. You can give a Lisp program exactly
the degree of extensibility it needs, often without resorting to object-oriented
techniques. A slot in a class is a global variable. And just as it is inelegant to
use a global variable where you could use a parameter, it could be inelegant to
build a world of classes and instances when you could do the same thing with less
effort in plain Lisp. With the addition of CLOS, Common Lisp has become the
most powerful object-oriented language in widespread use. Ironically, it is also
the language in which object-oriented programming is least necessary.
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Appendix: Packages

Packages are Common Lisp’s way of grouping code into modules. Early dialects
of Lisp contained a symbol-table, called the oblist, which listed all the symbols
read so far by the system. Through a symbol’s entry on the oblist, the system had
access to things like its value and its property list. A symbol listed in the oblist
was said to be interned.

Recent dialects of Lisp have split the concept of the oblist into multiple
packages. Now a symbol is not merely interned, but interned in a particular
package. Packages support modularity because symbols interned in one package
are only accessible in other packages (except by cheating) if they are explicitly
declared to be so.

A package is a kind of Lisp object. The current package is always stored
in the global variable *package*. When Common Lisp starts up, the current
package will be the user package: either user (in CLTL1 implementations), or
common-lisp-user (in CLTL2 implementations).

Packages are usually identified by their names, which are strings. To find the
name of the current package, try:

> (package-name *package*)
"COMMON-LISP-USER"

Usually a symbol is interned in the package that was current at the time
it was read. To find the package in which a symbol is interned, we can use
symbol-package:

> (symbol-package ’foo)
#<Package "COMMON-LISP-USER" 4CD15E>

381



382 APPENDIX

The return value here is the actual package object. For future use, let’s give foo
a value:

> (setq foo 99)
99

By calling in-package we can switch to a new package, creating it if
necessary:1

> (in-package ’mine :use ’common-lisp)
#<Package "MINE" 63390E>

At this point there should be eerie music, because we are in a different world: foo
here is not what it used to be.

MINE> foo
>>Error: FOO has no global value.

Why did this happen? Because the foo we set to 99 above is a distinct symbol
from foohere in mine.2 To refer to the originalfoo fromoutside the user package,
we must prefix the package name and two colons:

MINE> common-lisp-user::foo
99

So different symbols with the same print-name can coexist in different pack-
ages. There can be one foo in package common-lisp-user and another foo in
package mine, and they will be distinct symbols. In fact, that’s partly the point of
packages: if you’re writing your program in a separate package, you can choose
names for your functions and variables without worrying that someone will use
the same name for something else. Even if they use the same name, it won’t be
the same symbol.

Packages also provide a means of information-hiding. Programsmust refer to
functions and variables by their names. If you don’t make a given name available
outside your package, it becomes unlikely that code in another package will be
able to use or modify what it refers to.

In programs it’s usually bad style to use package prefixes with double colons.
By doing so you are violating the modularity that packages are supposed to
provide. If you have to use a double colon to refer to a symbol, it’s because
someone didn’t want you to.

1In older implementations of Common Lisp, omit the :use argument.
2Some implementations of Common Lisp print the package name before the toplevel prompt

whenever we are not in the user package. This is not required, but it is a nice touch.
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Usually one should only refer to symbols which have been exported. By
exporting a symbol from the package in which it is interned, we cause it to be
visible to other packages. To export a symbol we call (you guessed it) export:

MINE> (in-package ’common-lisp-user)
#<Package "COMMON-LISP-USER" 4CD15E>
> (export ’bar)
T
> (setq bar 5)
5

Now when we return to mine, we can refer to bar with only a single colon,
because it is a publicly available name:

> (in-package ’mine)
#<Package "MINE" 63390E>
MINE> common-lisp-user:bar
5

By importing bar into mine we can go one step further, and make mine actually
share the symbol bar with the user package:

MINE> (import ’common-lisp-user:bar)
T
MINE> bar
5

After importing bar we can refer to it without any package qualifier at all. The
two packages now share the same symbol; there can’t be a distinct mine:bar.

What if there already was one? In that case, the call to import would have
caused an error, as we see if we try to import foo:

MINE> (import ’common-lisp-user::foo)
>>Error: FOO is already present in MINE.

Before, when we tried unsuccessfully to evaluate foo in mine, we thereby caused
a symbol foo to be interned there. It had no global value and therefore generated
an error, but the interning happened simply as a consequence of typing its name.
So nowwhen we try to import foo into mine, there is already a symbol there with
the same name.

We can also import symbols en masse by defining one package to use another:

MINE> (use-package ’common-lisp-user)
T
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Now all symbols exported by the user package will automatically be imported by
mine. (If foo had been exported by the user package, this call would also have
generated an error.)

As of CLTL2, the package containing the names of built-in operators and
variables is called common-lisp instead of lisp, and new packages no longer
use it by default. Since we used this package in the call to in-package which
created mine, all of Common Lisp’s names will be visible here:

MINE> #’cons
#<Compiled-Function CONS 462A3E>

You’re practically compelled to make any new package use common-lisp (or
some other package containing Lisp operators). Otherwise you wouldn’t even be
able to get out of the new package.

As with compilation, operations on packages are not usually done at the
toplevel like this. More often the calls are contained in source files. Generally
it will suffice to begin a file with an in-package and a defpackage. (The
defpackagemacro is new in CLTL2, but some older implementations provide it.)
Here is what you might put at the top of a file containing a distinct package of
code:

(in-package ’my-application :use ’common-lisp)

(defpackage my-application
(:use common-lisp my-utilities)
(:nicknames app)
(:export win lose draw))

This will cause the code in the file—or more precisely, the names in the file—to
be in the package my-application. As well as common-lisp, this package uses
my-utilities, so any symbols exported thence can appear without any package
prefix in the file.

The my-application package itself exports just three symbols: win, lose,
and draw. Since the call to in-package gave my-application the nickname
app, code in other packages will be able to refer to them as e.g. app:win.

The kind of modularity provided by packages is actually a bit odd. We have
modules not of objects, but of names. Every package that uses common-lisp
imports the name cons, because common-lisp includes a function with that
name. But in consequence a variable called cons would also be visible every
package that used common-lisp. And the same thing goes for Common Lisp’s
other name-spaces. If packages are confusing, this is the main reasonwhy; they’re
not based on objects, but on names.
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Things having to do with packages tend to happen at read-time, not runtime,
which can lead to some confusion. The second expression we typed:

(symbol-package ’foo)

returned the value it did because reading the query created the answer. To evaluate
this expression, Lisp had to read it, which meant interning foo.

As another example, consider this exchange, which appeared above:

MINE> (in-package ’common-lisp-user)
#<Package "COMMON-LISP-USER" 4CD15E>
> (export ’bar)

Usually two expressions typed into the toplevel are equivalent to the same two
expressions enclosed within a single progn. Not in this case. If we try saying

MINE> (progn (in-package ’common-lisp-user)
(export ’bar))

>>Error: MINE::BAR is not accessible in COMMON-LISP-USER.

we get an error instead. This happens because the whole progn expression is
processed by read before being evaluated. When read is called, the current
package is mine, so bar is taken to be mine:bar. It is as if we had asked to
export this symbol, instead of common-lisp-user:bar, from the user package.

The way packages are defined makes it a nuisance to write programs which
use symbols as data. For example, if we define noise as follows:

(in-package ’other :use ’common-lisp)
(defpackage other

(:use common-lisp)
(:export noise))

(defun noise (animal)
(case animal
(dog ’woof)
(cat ’meow)
(pig ’oink)))

then if we call noise from another package with an unqualified symbol as an
argument, it will usually fall off the end of the case clauses and return nil:

OTHER> (in-package ’common-lisp-user)
#<Package "COMMON-LISP-USER" 4CD15E>
> (other:noise ’pig)
NIL
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That’s because what we passed as an argumentwas common-lisp-user:pig (no
offense intended), while the case key is other:pig. To make noise work as
one would expect, we would have to export all six symbols used within it, and
import them into any package from which we intended to call noise.

In this case, we could evade the problemby using keywords instead of ordinary
symbols. If noise had been defined

(defun noise (animal)
(case animal
(:dog :woof)
(:cat :meow)
(:pig :oink)))

then we could safely call it from any package:

OTHER> (in-package ’common-lisp-user)
#<Package "COMMON-LISP-USER" 4CD15E>
> (other:noise :pig)
:OINK

Keywords are like gold: universal and self-evaluating. They are visible every-
where, and they never have to be quoted. A symbol-driven function like defanaph
(page 223) should nearly always be written to use keywords.

Packages are a rich source of confusion. This introduction to the subject has
barely scratched the surface. For all the details, see CLTL2, Chapter 11.
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This section is also intended as a bibliography. All the books and papers listed here should
be considered recommended reading.

v Foderaro, John K. Introduction to the Special Lisp Section. CACM 34, 9 (September
1991), p. 27.

viii The final Prolog implementation is 94 lines of code. It uses 90 lines of utilities from
previous chapters. The ATN compiler adds 33 lines, for a total of 217. Since Lisp
has no formal notion of a line, there is a large margin for error when measuring the
length of a Lisp program in lines.

ix Steele, Guy L., Jr. Common Lisp: the Language, 2nd Edition. Digital Press, Bedford
(MA), 1990.

5 Brooks, Frederick P. The Mythical Man-Month. Addison-Wesley, Reading (MA),
1975, p. 16.

18 Abelson, Harold, and Gerald Jay Sussman, with Julie Sussman. Structure and
Interpretation of Computer Programs. MIT Press, Cambridge, 1985.

21 More precisely, we cannot define a recursive functionwith a single lambda-expression.
We can, however, generate a recursive function by writing a function to take itself
as an additional argument,

(setq fact
#’(lambda (f n)

(if (= n 0)
1
(* n (funcall f f (- n 1))))))

and then passing it to a function that will return a closure in which original function
is called on itself:

387
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(defun recurser (fn)
#’(lambda (&rest args)

(apply fn fn args)))

Passing fact to this function yields a regular factorial function,

> (funcall (recurser fact) 8)
40320

which could have been expressed directly as:

((lambda (f) #’(lambda (n) (funcall f f n)))
#’(lambda (f n)

(if (= n 0)
1
(* n (funcall f f (- n 1))))))

Many Common Lisp users will find labels or alambda more convenient.
23 Gabriel, Richard P. Performance and Standardization. Proceedings of the First

International Workshop on Lisp Evolution and Standardization, 1988, p. 60.
Testing triangle in one implementation, Gabriel found that “even when the C
compiler is provided with hand-generated register allocation information, the Lisp
code is 17% faster than an iterative C version of this function.” His paper mentions
several other programs which ran faster in Lisp than in C, including one that was
42% faster.

24 If you wanted to compile all the named functions currently loaded, you could do it
by calling compall:

(defun compall ()
(do-symbols (s)
(when (fboundp s)

(unless (compiled-function-p (symbol-function s))
(print s)
(compile s)))))

This function also prints the name of each function as it is compiled.
26 You may be able to see whether inline declarations are being obeyed by calling

(disassemble ’foo), which displays some representation of the object code of
function foo. This is also one way to check whether tail-recursion optimization is
being done.

31 One could imagine nreverse defined as:

(defun our-nreverse (lst)
(if (null (cdr lst))

lst
(prog1 (nr2 lst)

(setf (cdr lst) nil))))
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(defun nr2 (lst)
(let ((c (cdr lst)))
(prog1 (if (null (cdr c))

c
(nr2 c))

(setf (cdr c) lst))))

43 Good design always puts a premium on economy, but there is an additional reason
that programs should be dense. When a program is dense, you can see more of it at
once.
People know intuitively that design is easier when one has a broad view of one’s
work. This is why easel painters use long-handled brushes, and often step back
from their work. This is why generals position themselves on high ground, even if
they are thereby exposed to enemy fire. And it is why programmers spend a lot of
money to look at their programs on large displays instead of small ones.
Dense programs make the most of one’s field of vision. A general cannot shrink a
battle to fit on a table-top, but Lisp allows you to perform corresponding feats of
abstraction in programs. And the more you can see of your program at once, the
more likely it is to turn out as a unified whole.
This is not to say that one should make one’s programs shorter at any cost. If you
take all the newlines out of a function, you can fit it on one line, but this does not
make it easier to read. Dense code means code which has been made smaller by
abstraction, not text-editing.
Imagine how hard it would be to program if you had to look at your code on a
display half the size of the one you’re used to. Making your code twice as dense
will make programming that much easier.

44 Steele, Guy L., Jr. Debunking the “Expensive Procedure Call” Myth or, Procedu-
ral Call Implementations Considered Harmful or, LAMBDA: The Ultimate GOTO.
Proceedings of the National Conference of the ACM, 1977, p. 157.

48 For reference, here are simpler definitions of some of the functions in Figures 4.2
and 4.3. All are substantially (at least 10%) slower:
(defun filter (fn lst)
(delete nil (mapcar fn lst)))

(defun filter (fn lst)
(mapcan #’(lambda (x)

(let ((val (funcall fn x)))
(if val (list val))))

lst))

(defun group (source n)
(if (endp source)

nil
(let ((rest (nthcdr n source)))
(cons (if (consp rest) (subseq source 0 n) source)

(group rest n)))))
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(defun flatten (x)
(mapcan #’(lambda (x)

(if (atom x) (mklist x) (flatten x)))
x))

(defun prune (test tree)
(if (atom tree)

tree
(mapcar #’(lambda (x)

(prune test x))
(remove-if #’(lambda (y)

(and (atom y)
(funcall test y)))

tree))))

49 Written as it is, find2 will generate an error if it runs off the end of a dotted list:

> (find2 #’oddp ’(2 . 3))
>>Error: 3 is not a list.

CLTL2 (p. 31) says that it is an error to give a dotted list to a function expecting a
list. Implementations are not required to detect this error; some do, some don’t.
The situation gets murky with functions that take sequences generally. A dotted
list is a cons, and conses are sequences, so a strict reading of CLTL would seem to
require that

(find-if #’oddp ’(2 . 3))

return nil instead of generating an error, because find-if is supposed to take a
sequence as an argument.
Implementations vary here. Some generate an error anyway, and others return nil.
However, even implementations which follow the strict reading in the case above
tend to deviate in e.g. the case of (concatenate ’cons ’(a . b) ’(c . d)),
which is likely to return (a c . d) instead of (a c).
In this book, the utilities which expect lists expect proper lists. Those which operate
on sequences will accept dotted lists. However, in general it would be asking for
trouble to pass dotted lists to any function that wasn’t specifically intended for use
on them.

66 If we could tell how many parameters each function had, we could write a version of
compose so that, in f◦g,multiple values returned by gwould become the correspond-
ing arguments to f. In CLTL2, the new function function-lambda-expression
returns a lambda-expression representing the original source code of a function.
However, it has the option of returning nil, and usually does so for built-in func-
tions. What we really need is a function that would take a function as an argument
and return its parameter list.

73 A version of rfind-if which searches for whole subtrees could be defined as
follows:
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(defun rfind-if (fn tree)
(if (funcall fn tree)

tree
(if (atom tree)

nil
(or (rfind-if fn (car tree))

(and (cdr tree) (rfind-if fn (cdr tree)))))))

The function passed as the first argument would then have to apply to both atoms
and lists:

> (rfind-if (fint #’atom #’oddp) ’(2 (3 4) 5))
3
> (rfind-if (fint #’listp #’cddr) ’(a (b c d e)))
(B C D E)

95 McCarthy, John, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, and
Michael I. Levin. Lisp 1.5 Programmer’s Manual, 2nd Edition. MIT Press, Cam-
bridge, 1965, pp. 70-71.

106 When Section 8.1 says that a certain kind of operator can only be written as a macro,
it means, can only be written by the user as a macro. Special forms can do everything
macros can, but there is no way to define new ones.
A special form is so called because its evaluation is treated as a special case. In an
interpreter, you could imagine eval as a big cond expression:

(defun eval (expr env)
(cond ...

((eq (car expr) ’quote) (cadr expr))
...
(t (apply (symbol-function (car expr))

(mapcar #’(lambda (x)
(eval x env))

(cdr expr))))))

Most expressions are handled by the default clause, which says to get the function
referred to in the car, evaluate all the arguments in the cdr, and return the result of
applying the former to the latter. However, an expression of the form (quote x)
should not be treated this way: the whole point of a quote is that its argument is not
evaluated. So eval has to have one clause which deals specifically with quote.
Language designers regard special forms as something like constitutional amend-
ments. It is necessary to have a certain number, but the fewer the better. The special
forms in Common Lisp are listed in CLTL2, p. 73.
The preceding sketch of eval is inaccurate in that it retrieves the function before
evaluating the arguments, whereas inCommonLisp the order of these two operations
is deliberately unspecified. For a sketch of eval in Scheme, see Abelson and
Sussman, p. 299.
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115 It’s reasonable to say that a utility function is justified when it pays for itself in
brevity. Utilities written as macros may have to meet a stricter standard. Reading
macro calls can be more difficult than reading function calls, because they can
violate the Lisp evaluation rule. In Common Lisp, this rule says that the value of
an expression is the result of calling the function named in the car on the arguments
given in the cdr, evaluated left-to-right. Since functions all follow this rule, it is no
more difficult to understand a call to find2 than to find-books (page 42).
However, macros generally do not preserve the Lisp evaluation rule. (If one did,
you could have used a function instead.) In principle, each macro defines its own
evaluation rule, and the reader can’t know what it is without reading the macro’s
definition. So a macro, depending on how clear it is, may have to save much more
than its own length in order to justify its existence.

126 The definition of for given in Figure 9.2, like several others defined in this book,
is correct on the assumption that the initforms in a do expression will be evaluated
left-to-right. CLTL2 (p. 165) says that this holds for the stepforms, but says nothing
one way or the other about the initforms.
There is good cause to believe that this is merely an oversight. Usually if the order
of some operations is unspecified, CLTL will say so. And there is no reason that
the order of evaluation of the initforms of a do should be unspecified, since the
evaluation of a let is left-to-right, and so is the evaluation of the stepforms in do
itself.

128 Common Lisp’s gentemp is like gensym except that it interns the symbol it creates.
Like gensym, gentemp maintains an internal counter which it uses to make print
names. If the symbol it wants to create already exists in the current package, it
increments the counter and tries again:

> (gentemp)
T1
> (setq t2 1)
1
> (gentemp)
T3

and so tries to ensure that the symbol created will be unique. However, it is still
possible to imagine name conflicts involving symbols created by gentemp. Though
gentemp can guarantee to produce a symbol not seen before, it cannot foresee what
symbols might be encountered in the future. Since gensyms work perfectly well
and are always safe, why use gentemp? Indeed, for macros the only advantage of
gentemp is that the symbols it makes can be written out and read back in, and in
such cases they are certainly not guaranteed to be unique.

131 The capture of function names would be a more serious problem in Scheme, due to
its single name-space. Not until 1991 did the Scheme standard suggest any official
way of defining macros. Scheme’s current provision for hygienic macros differs
greatly from defmacro. For details, and a bibliography of recent research on the
subject, see the most recent Scheme report.
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137 Miller, Molly M., and Eric Benson. Lisp Style and Design. Digital Press, Bedford
(MA), 1990, p. 86.

158 Instead of writing mvpsetq, it would be cleaner to define an inversion for values.
Then instead of

(mvpsetq (w x) (values y z) ...)

we could say

(psetf (values w x) (values y z) ...)

Defining an inversion for values would also render multiple-value-setq un-
necessary. Unfortunately, as things stand in Common Lisp it is impossible to define
such an inversion; get-setf-method won’t return more than one store variable,
and presumably the expansion function of psetf wouldn’t know what to do with
them if it did.

180 One of the lessons of setf is that certain classes of macros can hide truly enormous
amounts of computation and yet leave the source code perfectly comprehensible.
Eventually setf may be just one of a class of macros for programming with
assertions.
For example, it might be useful to have a macro insist which took certain ex-
pressions of the form (predicate . arguments), and would make them true if they
weren’t already. As setf has to be told how to invert references, this macro would
have to be told how to make expressions true. In the general case, such a macro call
might amount to a call to Prolog.

198 Gelernter, David H., and Suresh Jagannathan. Programming Linguistics. MIT
Press, Cambridge, 1990, p. 305.

199 Norvig, Peter. Paradigms of Artificial Intelligence Programming: Case Studies in
Common Lisp. Morgan Kaufmann, San Mateo (CA), 1992, p. 856.

213 The constant least-negative-normalized-double-float and its three cousins
have the longest names in Common Lisp, with 38 characters each. The operator
with the longest name is get-setf-method-multiple-value, with 30.
The following expression returns a list, from longest to shortest, of all the symbols
visible in the current package:

(let ((syms nil))
(do-symbols (s)
(push s syms))

(sort syms
#’(lambda (x y)

(> (length (symbol-name x))
(length (symbol-name y))))))

217 As of CLTL2, the expansion function of a macro is supposed to be defined in the
environment where the defmacro expression appears. This should make it possible
to give propmacro the cleaner definition:
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(defmacro propmacro (propname)
‘(defmacro ,propname (obj)

‘(get ,obj ’,propname)))

But CLTL2 does not explicitly state whether the propname form originally passed to
propmacro is part of the lexical environment in which the inner defmacro occurs.
In principle, it seems that if color were defined with (propmacro color), it
should be equivalent to:

(let ((propname ’color))
(defmacro color (obj)
‘(get ,obj ’,propname)))

or

(let ((propname ’color))
(defmacro color (obj)
(list ’get obj (list ’quote propname))))

However, in at least some CLTL2 implementations, the new version of propmacro
does not work.
In CLTL1, the expansion function of a macro was considered to be defined in the null
lexical environment. So for maximum portability, macro definitions should avoid
using the enclosing environment anyway.

238 Functions like match are sometimes described as doing unification. They don’t,
quite; match will successfully match (f ?x) and ?x, but those two expressions
should not unify.
For a description of unification, see: Nilsson, Nils J. Problem-Solving Methods in
Artificial Intelligence. McGraw-Hill, New York, 1971, pp. 175-178.

244 It’s not really necessary to set unbound variables to gensyms, or to call gensym? at
runtime. The expansion-generating code in Figures 18.7 and 18.8 could be written
to keep track of the variables for which binding code had already been generated. To
do this the code would have to be turned inside-out, however: instead of generating
the expansion on the way back up the recursion, it would have to be accumulated
on the way down.

244 A symbol like ?x occurring in the pattern of an if-match always denotes a new
variable, just as a symbol in the car of a let binding clause does. So although Lisp
variables can be used in patterns, pattern variables from outer queries cannot—you
can use the same symbol, but it will denote a new variable. To test that two lists
have the same first element, it wouldn’t work to write:

(if-match (?x . ?rest1) lst1
(if-match (?x . ?rest2) lst2

?x))

In this case, the second ?x is a new variable. If both lst1 and lst2 had at least one
element, this expression would always return the car of lst2.
However, since you can use (non-?ed) Lisp variables in the pattern of an if-match,
you can get the desired effect by writing:
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(if-match (?x . ?rest1) lst1
(let ((x ?x))

(if-match (x . ?rest2) lst2
?x)))

The restriction, and the solution, apply to the with-answer and with-inference
macros defined in Chapters 19 and 24 as well.

254 If it were a problem that “unbound” pattern variables were nil, you could have
them bound to a distinct gensym by saying (defconstant unbound (gensym))
and then replacing the line

‘(,v (binding ’,v ,binds)))

in with-answer with:

‘(,v (aif2 (binding ’,v ,binds) it unbound))

258 Scheme was invented by Guy L. Steele Jr. and Gerald J. Sussman in 1975. The
language is currently defined by: Clinger, William, and Jonathan A. Rees (Eds.).
Revised4 Report on the Algorithmic Language Scheme. 1991.
This report, and various implementations of Scheme, were at the time of printing
available by anonymous FTP from altdorf.ai.mit.edu:pub.

266 As another example of the technique presented in Chapter 16, here is the derivation
of the defmacro template within the definition of =defun:

(defmacro fun (x)
‘(=fun *cont* ,x))

(defmacro fun (x)
(let ((fn ’=fun))
‘(,fn *cont* ,x)))

‘(defmacro ,name ,parms
(let ((fn ’,f))

‘(,fn *cont* ,,@parms)))

‘(defmacro ,name ,parms
‘(,’,f *cont* ,,@parms))

267 If you wanted to see multiple return values in the toplevel, you could say instead:

(setq *cont*
#’(lambda (&rest args)

(if (cdr args) args (car args))))

273 This example is based on one given in: Wand, Mitchell. Continuation-Based
Program Transformation Strategies. JACM 27, 1 (January 1980), pp. 166.



396 NOTES

273 A program to transform Scheme code into continuation-passing style appears in:
Steele, Guy L., Jr. LAMBDA: The Ultimate Declarative. MIT Artificial Intelligence
Memo 379, November 1976, pp. 30-38.

292 These implementations of choose and fail would be clearer in T, a dialect of
Scheme which has push and pop, and allows define in non-toplevel contexts:

(define *paths* ())
(define failsym ’@)

(define (choose choices)
(if (null? choices)

(fail)
(call-with-current-continuation
(lambda (cc)

(push *paths*
(lambda () (cc (choose (cdr choices)))))

(car choices)))))

(call-with-current-continuation
(lambda (cc)
(define (fail)

(if (null? *paths*)
(cc failsym)
((pop *paths*))))))

For more on T, see: Rees, Jonathan A., Norman I. Adams, and James R. Meehan.
The T Manual, 5th Edition. Yale University Computer Science Department, New
Haven, 1988.
The T manual, and T itself, were at the time of printing available by anonymous FTP
from hing.lcs.mit.edu:pub/t3.1.

293 Floyd, Robert W. Nondeterministic Algorithms. JACM 14, 4 (October 1967),
pp. 636-644.

298 The continuation-passing macros defined in Chapter 20 depend heavily on the
optimization of tail calls. Without it they may not work for large problems. For
example, at the time of printing, few computers have enough memory to allow the
Prolog defined in Chapter 24 to run the zebra benchmark without the optimization
of tail calls. (Warning: some Lisps crash when they run out of stack space.)

303 It’s also possible to define a depth-first correct choose that works by explicitly
avoiding circular paths. Here is a definition in T:

(define *paths* ())
(define failsym ’@)
(define *choice-pts* (make-symbol-table))

(define-syntax (true-choose choices)
‘(choose-fn ,choices ’,(generate-symbol t)))
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(define (choose-fn choices tag)
(if (null? choices)

(fail)
(call-with-current-continuation
(lambda (cc)

(push *paths*
(lambda () (cc (choose-fn (cdr choices)

tag))))
(if (mem equal? (car choices)

(table-entry *choice-pts* tag))
(fail)
(car (push (table-entry *choice-pts* tag)

(car choices))))))))

In this version, true-choose becomes a macro. (The T define-syntax is like
defmacro except that the macro name is put in the car of the parameter list.) This
macro expands into a call to choose-fn, a function like the depth-first choose
defined in Figure 22.4, except that it takes an additional tag argument to identify
choice-points. Each value returned by a true-choose is recorded in the global
hash-table *choice-pts*. If a given true-choose is about to return a value it has
already returned, it fails instead. There is no need to change fail itself; we can use
the fail defined on page 396.
This implementation assumes that paths are of finite length. For example, it would
allow path as defined in Figure 22.13 to find a path from a to e in the graph displayed
in Figure 22.11 (though not necessarily a direct one). But the true-choose defined
above wouldn’t work for programs with an infinite search-space:

(define (guess x)
(guess-iter x 0))

(define (guess-iter x g)
(if (= x g)

g
(guess-iter x (+ g (true-choose ’(-1 0 1))))))

With true-choose defined as above, (guess n) would only terminate for non-
positive n.
How we define a correct choose also depends on what we call a choice point. This
version treats each (textual) call to true-choose as a choice point. That might
be too restrictive for some applications. For example, if two-numbers (page 291)
used this version of choose, it would never return the same pair of numbers twice,
even if it was called by several different functions. That might or might not be what
we want, depending on the application.
Note also that this version is intended for use only in compiled code. In interpreted
code, the macro call might be expanded repeatedly, each time generating a new
gensymed tag.

305 Woods, William A. Transition Network Grammars for Natural Language Analysis.
CACM 3, 10 (October 1970), pp. 591-606.
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312 The original ATN system included operators for manipulating registers on the stack
while in a sub-network. These could easily be added, but there is also a more general
solution: to insert a lambda-expression to be applied to the register stack directly
into the code of an arc body. For example, if the node mods (page 316) had the
following line inserted into the body of its outgoing arc,

(defnode mods
(cat n mods/n
((lambda (regs)

(append (butlast regs) (setr a 1 (last regs)))))
(setr mods *)))

then following the arc (however deep) would set the the topmost instance of the
register a (the one visible when traversing the topmost ATN) to 1.

323 If necessary, it would be easy to modify the Prolog to take advantage of an existing
database of facts. The solution would be to make prove (page 336) a nested choose:

(=defun prove (query binds)
(choose

(choose-bind b2 (lookup (car query) (cdr query) binds)
(=values b2))

(choose-bind r *rules*
(=funcall r query binds))))

325 To test quickly whether there is any match for a query, you could use the following
macro:

(defmacro check (expr)
‘(block nil

(with-inference ,expr
(return t))))

344 The examples in this section are translated from ones given in: Sterling, Leon, and
Ehud Shapiro. The Art of Prolog: Advanced Programming Techniques. MIT Press,
Cambridge, 1986.

349 The lack of a distinct name for the concepts underlying Lisp may be a serious
barrier to the language’s acceptance. Somehow one can say “We need to use C++
because we want to do object-oriented programming,” but it doesn’t sound nearly as
convincing to say “We need to use Lisp because we want to do Lisp programming.”
To administrative ears, this sounds like circular reasoning. Such ears would rather
hear that Lisp’s value hinged on a single, easily understood concept. For years we
have tried to oblige them, with little success. Lisp has been described as a “list-
processing language,” a language for “symbolic computation,” and most recently, a
“dynamic language.” None of these phrases captures more than a fraction of what
Lisp is about. When retailed through college textbooks on programming languages,
they become positively misleading.
Efforts to sum up Lisp in a single phrase are probably doomed to failure, because the
power of Lisp arises from the combination of at least five or six features. Perhaps
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we should resign ourselves to the fact that the only accurate name for what Lisp
offers is Lisp.

352 For efficiency, sort doesn’t guarantee to preserve the order of sequence elements
judged equal by the function given as the second argument. For example, a valid
Common Lisp implementation could do this:

> (let ((v #((2 . a) (3 . b) (1 . c) (1 . d))))
(sort (copy-seq v) #’< :key #’car))

#((1 . D) (1 . C) (2 . A) (3 . B))

Note that the relative order of the first two elements has been reversed.
The built-in stable-sort provides a way of sorting which won’t reorder equal
elements:

> (let ((v #((2 . a) (3 . b) (1 . c) (1 . d))))
(stable-sort (copy-seq v) #’< :key #’car))

#((1 . C) (1 . D) (2 . A) (3 . B))

It is a common error to assume that sort works like stable-sort. Another
common error is to assume that sort is nondestructive. In fact, both sort and
stable-sort can alter the sequence they are told to sort. If you don’t want this to
happen, you should sort a copy. The call to stable-sort in get-ancestors is
safe because the list to be sorted has been freshly made.
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barbarians 283
Basic 30, 33
battlefield 8
before 50
Benson, Eric 137
best 52
Bezier curves 185
=bind 267
binding 239
binding lists 239
bindings, altering 107
blackboards 281
block 154
implicit 131, 155

block-names 131
body (of expressions) 87, 91, 87
body (of a rule) 322
&body 87
bookshops 41
bottom-up design v, 3, 321
and functional arguments 42
and incremental testing 38
and shape of programs 4
multilayer 321

bound—see variables, bound
break-loop 56
brevity viii, 43
bricks, furniture made of 117
Brooks, Frederick P. 5

C 388
C++ 398

call-next-method 200, 375
sketch of 358

call-with-current-continuation
(call/cc) 260

at toplevel 292
capital expenditures 43
capture 118
avoiding with gensyms 128
avoiding with packages 130
avoiding by prior evaluation 125
of block names 131
detecting potential 121
free symbol capture 119
avoiding 125

of function names 131, 392
intentional 190, 267, 313
macro argument capture 118
of tags 131

case 15
>case 152
case-sensitivity 331
chains of closures 76, 269
Chocoblobs 298
choose 287
extent of 291

choose
Common Lisp version 295
Scheme version 293

choose-bind 295
chronological backtracking 292
classes
defining 364
see also: superclasses

Clinger, William 395
CLOS 364
as an embedded language 349, 377
see also: classes, generic functions,

methods, slots
closed world assumption 249
closures 17, 62, 76
CLTL—seeCommon Lisp: the Language
code-walkers 237, 273
Common Lisp: the Language ix
Common Lisp
case-sensitivity of 331
definition of ix
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differences between versions
compilation of closures 25
complement 62
defpackage 384
destructuring-bind 93
dynamic-extent 150
environment of expanders 96, 393
no expansion in compiled code 136
function-lambda-expression390
*gensym-counter* 129
-if-not deprecated 62
ignore-errors 147
inversions from defun 179
Lisp package 384
name of user package 381
redefining built-in operators 131,
199

&rest parameters not fresh 137
symbol-macros 205
with-slots 236
see also: CLOS, series

evaluation rule 392
long names in 393
vs. Scheme 259

CommonLispObject System—seeCLOS
common-lisp 384
common-lisp-user 381
compall 388
compilation 24
bounds-checking during 186
computation during 109, 181, 197,

254, 335
of embedded languages 116, 254
errors emerging during 139
inline 26, 109, 110
testing 388

of local functions 23, 25, 81, 346
of macro calls 83, 101, 136
of networks 79
restrictions on 25
senses of 346
of queries 254
see also: tail-recursion optimization

compile 24, 116, 388
compile-file 25
compiled-function-p 24

complement 62
compose 66
composition—see functions,

composition of
conc1 45
conc1f 170, 174
concf 170
concnew 170
conditionals 108, 150
condlet 146
congruent parameter lists 372
consequent 322
consing
avoiding 31, 150, 197, 363

constitutional amendments 391
constraints 332
*cont* 266
context
and referential transparency 199
see also: environments; macros,

context-creating
continuations 258
destructive operations in 261, 313
cost of 284
see also: call-with-current-con-

tinuation
continuation-passing macros 266
use in multiprocessing 283
use in nondeterministic choice 296
restrictions on 270
and tail-recursion optimization 298

continuation-passing style (CPS) 273
cookies 184
copy-list 71, 206
copy-tree 71, 210
courtiers 375
cut 337
with fail 342
green 339
red 339
in Lisp 298

cut 301

databases
caching updates to 179
locks on 148
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natural language interfaces to 306
queries on 246
representation of 247
with Prolog 398

dbind 232
def! 64
defanaph 223
defclass 364
defdelim 228
defgeneric 371
define-modify-macro 168
defmacro 82, 95
defpackage 384
defprop 354
defun 10, 113
defining inversions with 179

=defun 267
defsetf 178
delay 211
delete-if 64
density of source code 59, 389
destruc 232
destructive operations 31, 64
destructuring
on arrays 234
on instances 236
on lists 230
in macros 93
and reference 236
on sequences 231
on structures 235

destructuring-bind 93, 213, 230
differences 207
disassemble 388
dispatching 370, 371
do 98
implicit block in 131
multiple-valued version 162
order of evaluation in 392

do-file 199
do-symbols 388, 393
do-tuples/c 156
do-tuples/o 156
do* 97
multiple-valued version 159

dolist 94

generalization of 156
Dolphin Seafood 219
dotted lists 70, 390
duplicate 50
dynamic extent 127, 150
dynamic languages 398
dynamic scope 16

Edwards, Daniel J. 391
elt 244
Emacs—see Gnu Emacs
embedded languages 7, 188, 246
ATNs as 309
benefits of 110,116, 246, 377
borderline of 246
compilation of 116
not quite compilers 346
implementation of 116
for multiprocessing 275
Prolog as 321
query languages as 246
see also: CLOS

end-of-file (eof) 197, 225
English 306
environment
argument 95
interactive 8
of macro expanders 96, 393
of macro expansions 108
null 96, 278, 394

error 148
error-checking 45
eval
explicit 34, 163, 197, 278
on macroexpansions 92
sketch of 391

evaluation
avoiding 151, 181
lazy 211
order of
in Common Lisp 135
in Scheme 259

sketch of 391
evaluation rule 392
evenp 14
evolution
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design by 1
of Lisp 158
of programming languages 8

expander code 99
expansion code 99
explode 58
exploratory programming 1, 284
export 383
:export 384
expt 32
extensibility 5
of object-oriented programs 16, 379

extent, dynamic 127, 150

f 173, 222
factions 167
factorials 343, 387
fail 287
fail
Common Lisp version 295
Scheme version 293

failure 195
fboundp 388
fif 67
filter 47
simpler version 389

find2 50
evolution of 41

find-if 41, 195
sketch of 206
version for trees 73

finished programs 285
fint 67
flatten 47, 72, 210
simpler version 389

Floyd, Robert W. 293
fmakunbound 373
fn 202, 229
Foderaro, John K. v
for 154
force 211
Fortran 8
free—see variables, free
fullbind 324
fun x
fun 67

funcall 13, 259
=funcall 267
function calls, avoiding
by inline compilation 26
with macros 109
by tail recursion 23

functional interfaces 35
functional programs 28
almost 35
and bottom-up programming 37
from imperative ones 33
shape of 30

functions
as arguments 13, 42, 177
constant 226
closures of 17, 62, 76
use in nondeterministic choice 296
stack allocation of 150

combined with macros 141, 149, 266
compiled 24
composition of 66, 201, 228
as a data type 9
defining 10
filleting 115
generating recursive 68, 204
generic—see generic functions
internal 172
interpreted 24
as lists 27
literal 11
recursive 21, 193

local 21
vs. macros 109
names of 11, 213
as properties 15
redefining built-in 131, 174
as return values 17, 61, 76, 201
set operations on 67, 201
with state 18, 65
tail-recursive 23
transforming into macros 102
undefining 373
see also: compilation; defgeneric;

defun; labels
function-lambda-expression 390
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Gabriel, Richard P. 23
garbage
avoiding—see consing, avoiding
collection 8, 81

generalized variables 107, 165
meaning of 179
see also: inversions

generic functions 371
defining 371
removing 373
see also: methods

gensym 128
to indicate failure 197
as unbound 244, 330

gensym? 243
*gensym-counter* 129
gentemp 392
Gelernter, David H. 198
get 63
gethash 196
recursive version 350

get-setf-method 171
gift-shops, airport 278
Gnu Emacs 1, 5
go 100, 155
gods 8
gold 386
good-reverse 30
group 47
simpler version 389

Hart, Timothy P. 391
hash tables 65, 247, 350
head 322
hiding implementation details 216, 382
hygienic macros 392

ice-cream 370
ice-skating 33
if3 150
if-match 242
ignore-errors 147
Igor 289
imperative programming 33
import 383
in 152

incf 171
generalization of 173

incremental testing 37
indexing 249
inheritance
single 196
of slots 366
multiple 366
sketch of 351

in-if 152
:initarg 365
:initform 365
in-package 382
inq 152
instances 365
intellectuals 374
interactive development 37, 316
interactive environment 8
intercourse, lexical 108
Interleaf 1, 5
intern 128, 136, 266
interning 128, 136, 381
intersection 207
intersections 207
inversions
asymmetric 179
defining 178
see also: generalized variables

iteration
macros for 108, 154
vs. nondeterministic choice 291, 325
without loops 264, 325

Jagannathan, Suresh 198
jazz vii
joiner 62
joke, practical—see Nitzberg, Mark

keywords 386

labels 21
lambda 11
=lambda 267
lambda-expressions 11, 21
last 45
last1 45
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Latin 306
lawyers 298
let 144, 199
let* 172
lengths of programs 387
Levin, Michael I. 391
lexical scope 16
life, meaning of 197
lions 37
Lisp
1.5 95
defining features of 1, 8, 349, 398
integration with user programs 110
slowness of 285
speed of 388
see also Common Lisp, Scheme, T

lists
accumulating 47
as binary trees 70
as code 116
decreased role of 44
disambiguating return valueswith 196
dotted 390
as facts 247
flat—see flatten
interleaving 160
operating on end of 170
quoted 37
recursers on 68, 204
as trees 262
uses for 70

list processing 44, 398
locality 36
logic programs 334
longer 47
simpler version 389

loop 154
loops
interrupting 154
see also: iteration

lrec 69

McCarthy, John 1, 391
mac 92
macroexpand 91
macroexpand-1 91

macro-characters—see read-macros
macros 82
as abbreviations 213
access 167, 216
anaphoric 189
defining automatically 218
for distinguishing failure from fal-
sity 195

for generating recursive functions
204

multiple-valued 198
and referential transparency 198
see also: call-next-method

and apply 110
applications of 111
arguments to 107
for building functions 201
calls invertible 166, 216
clarity 99, 233
and CLOS 378
for computation at compile-time 181
context-creating 143
combined with functions 141, 149,

266
compiled 83, 101, 136
complex 96
defining 82
efficiency 99
environment argument to 95
environment of expander 96, 393
environment of expansion 108
errors in
modifying arguments 137
modifying expansions 139
non-functional expanders 136
nonterminating expansion 139
number of evaluations 133, 167
order of evaluation 135
see also: capture

expansion of 83
in compiled code 136
multiple 136, 138
non-terminating 139
testing 92
time of 83

from functions 102
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vs. functions 109
hygienic 392
justification of 392
macro-defining 213, 266
parameter lists 93
position in source code 102, 266
as programs 96
proportion in a program 117
recursion in 139
redefining 101, 138
built-in 199

simple 88
skeletons of 121
style for 99
testing 91
unique powers of 106
when to use 106
see also: backquote, read-macros,

symbol-macros
mainframes 348
make-dispatch-macro-character 226
make-instance 365
make-hash-table 65
make-string 58
map-> 54
map0-n 54
map1-n 54
mapa-b 54, 228
mapc 163
mapcan 41, 46
nondestructive version 55
sketch of 55

mapcar 13
version for multiple lists 55
version for trees 55

mapcars 54
mapcon 176, 218
mappend 54
mappend-mklist idiom 160
mapping functions 53
mark 301
match 239
matching—see pattern-matching
maxmin 207
Meehan, James R. 396
member 88

misuse of 151
Prolog implementation 332
returns a cdr 50

Miller, Molly M. 137
member-if 196
memq 88
memoizing 65, 174
message-passing 350
vs. Lisp syntax 353

methods
adhere to one another 369
after- 374
sketch of 357

around- 375
sketch of 356

auxiliary 374
sketch of 356

before- 374
sketch of 357

of classes 368
without classes 371
as closures 378
redefining 372
removing 373
sketch of 359

isomorphic to slots 368
specialization of 369
on objects 371
on types 370

see also: generic functions
method combination

and
sketch of 363

operator 376
sketch of 362

or
sketch of 363

progn
sketch of 362

standard 376
sketch of 358

:method-combination 377
Michelangelo 11
mines 264
mklist 45, 160
mkstr 58
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modularity 167, 381, 382
de Montaigne, Michel 2
most 52
most-of 182
mostn 52
moving parts 4
multiple inheritance—see inheritance,

multiple
multiple values 32
to avoid side-effects 32
to distinguish failure from falsity 196,

239
in generalized variables 172
iteration with 158
receiving—seemultiple-value-bind
returning—see values

multiple-value-bind 32
leftover parameters nil 234

multiprocessing 275
mvdo 162
mvdo* 159
mvpsetq 161
Mythical Man-Month, The 5

name-spaces 12, 205, 259, 273, 384, 392
natural language—see ATNs
nconc 31, 35, 137
negation
of facts 249
in Prolog 325
in queries 252

networks
representing 76, 79

next-method-p 375
sketch of 358

:nicknames 384
nif 150
nil
default block name 131
forbidden in case clauses 153
multiple roles of 51, 195

nilf 169
Nitzberg, Mark—see joke, practical
nondeterministic choice 286
Common Lisp implementation 295
need for CPS macros 296

restrictions on 297
and tail-recursionoptimization298,
396

Scheme implementation 293
appearance of foresight 289
breadth-first 303
correct 302
depth-first 292
in ATNs 308
nonterminating 293
in Prolog 334

in functional programs 286
vs. iteration 291, 325
optimizing 298
and parsing—see ATNs
and search 290
see also: choose, fail

Norvig, Peter 199
nreverse 31
sketch of 388

nthmost 183

object-oriented programming
dangers of 379
defining features of 350
like distributed systems 348
and extensibility 16, 379
name of 349
in plain Lisp 349
see also: C++; classes; CLOS; generic

functions; inheritance; methods;
message-passing; slots; Smalltalk

on-cdrs 205
on-trees 210
open systems 6
open-coding—see compilation, inline
orthogonality 63

*package* 125, 381
packages 381
aberrations involving 384
avoiding capture with 130, 131
creating 382
current 381
using distinct 131, 382
inheriting symbols from 384
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nicknames for 384
switching 382
user 381
see also: intern; interning

parsers, nondeterministic—see ATNs
paths, traversing 155
pat-match 242
pattern-matching 186, 238
pattern variables 238
phrenology 30
planning 2
pointers 76
pools 313
popn 173
pop-symbol 220
position 49
*print-array* 245
*print-circle* 70
print-names 57, 129, 382
processes 275
instantiation of 278
scheduling of 279
state of 278

proclaim 23, 45
productivity 5
programming languages
battlefield of 8
embedded—see embedded languages
expressive power of vii
extensible 5
high-level 8
see also: Algol; Basic; C; C++; Com-

mon Lisp; Fortran; Lisp; Pro-
log; Scheme; Smalltalk; T

Prolog 321
assignment in 343
calling Lisp from 343
case-sensitivity of 331
conceptual ingredients 321
nondeterminism in 333
programming techniques 332
restrictions on variables 344
rules 329
bodyless 323, 330
implicit conjunction in body 328
left-recursive 334

order of 329
subverting 346
syntax of 331

promises 211
prompt 56
property lists 15, 63, 216
propmacro 216
alternative definition 393

propmacros 216
prune 47
simpler version 389

pruning search trees—see cut
psetq 96
multiple-valued version 161

pull 173, 223
pull-if 173
push-nreverse idiom 47
pushnew 174

queries
complex 249, 335
conditional 191

query languages 249
quicksort 345
quote 84, 391
see also: ’

quoted lists, returning 37, 139

rapid prototyping 1, 284
of individual functions 24, 48

read 56, 128, 197, 224
read-delimited-list 227
:reader 367
read-eval-print loop 57
read-from-string 58
read-line 56
readlist 56
read-macros 224
recurser 388
recursion
on cdrs 68, 204
in grammars 306
in macros 139, 192
without naming 388
on subtrees 70, 208
tail- 23, 140
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reduce 207, 363
Rees, Jonathan A. 395, 396
referential transparency 198
remove-duplicates
sketch of 206

remove-if 14
remove-if-not 40
rep 324
reread 58
&rest parameters 87
not guaranteed fresh 137
in utilities 174

return 131, 155
return-from 131, 154
return values
functions as—see functions, as return

values
multiple—see multiple values

re-use of software 4
reverse 30
rfind-if 73, 210
alternate version 390

rget 351
rich countries 285
rmapcar 54
Rome 283
rotatef 29
rplaca 166
rules
structure of 322
as virtual facts 323
see also: Prolog, rules in

Scheme
vs. Common Lisp 259
cond 192
macros in 392
returning functions in 62

scope 16, 62
scoundrels, patriotic 352
scrod 219
search trees 265
sequence operators 244
series 55
set 178
set-difference 207

setf 165
see also: generalized variables, inver-

sions
set-macro-character 224
setq
destroys referential transparency 198
ok in expansions 100
now redundant 170

Shapiro, Ehud 398
sharp (#) 226
shuffle 161
side-effects 28
destroy locality 36
in macro expanders 136
mitigating 35
on &rest parameters 137
on quoted objects 37

signum 86
simple? 242
single 45
Sistine Chapel 11
skeletons—see macros, skeletons of
sketches 284
sleep 65
slots
accessor functions for 365
declaring 364
as global variables 379
initializing 365
isomorphic to methods 368
read-only 367
shared 367

Smalltalk 350
some
sketch of 206

sort 14, 352
sortf 176
sorting
of arguments 176
partial 184
see also: stable-sort

special 17
special forms 9, 391
specialization—seemethods, specializa-

tion of
speed 23
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splicing 86
splines—see Bezier curves
split-if 50
sqrt 32
squash 160
stable-sort 352, 399
stacks
allocation on 150
of ATN registers 312
in continuations 260, 261
use for iteration 264
overflow of 396

Steele, Guy Lewis Jr. ix, 43, 213, 395,
396

Sterling, Leon 398
strings
building 57
matching 231, 244
as vectors 233

Structure and InterpretationofComputer
Programs 18

structured programming 100
subseq 244
superclasses
precedence of 369
sketch of 352

Sussman, Gerald Jay 18, 395
symb 58
symbols
building 57
as data 385
exported 383
imported 383
interning—see intern
names of 57, 129, 382
see also: keywords

symbol-function 12, 388
symbolic computation 398
symbol-macrolet 105, 205, 210
symbol-name 58
symbol-package 381
symbol-value 12, 178
symbol-macros 105, 205, 236, 237
swapping values 29

T 396

tagbody 155
tail-recursion optimization 22
needed with CPS macros 298
testing for 388, 396

taxable operators 32
testing
incremental 37
of macros—see macros, testing

TEX vi, 5
tf 169
Theodebert 236
three-valued logic 151
till 154
time 65, 359
times of evaluation 224, 229
toggle 169
top-down design 3
trace 111, 266, 309
transition networks 306
transformation
embedded languages implemented by

116, 241
of macro arguments 107, 112

trec 75
trees 70, 262
cross-products of 265
leaves of 72
recursers on 70

true-choose
breadth-first version 304
T implementation 396

depth-first version 396
truncate 32
ttrav 74
Turing Machines vii
twenty questions 77
typecase 62
type-of 371
typep 243
types
declaration of 23
specialization on 370

typing 44, 112

undefmethod 373
unification 394
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union 206
unspecified order of result 207, 364

unions 207
unspecialized parameters 373
unwind-protect 148
:use 384
user 381
utilities 40
as an investment 43, 392
become languages 113
mistaken argument against 59

var? 239
variable capture—see capture
variables
bound 16
free 16, 121
generalized—seegeneralizedvariables
global 36, 125, 268, 379

varsym? 239
redefined 335

vectors
for ATN registers 313
creating with backquote 86
matching 231, 244

visual aspects of source code 30, 213,
231

voussoirs 8
values 32
inversion for 393

=values 267

wait 280
Wand, Mitchell 395
Weicker, Jacqueline J. x
when-bind 145
when-bind* 145
while 154
with-answer 251
redefined 255

with-array 234
with-gensyms 145
with-inference 324
redefined 335, 340

with-matrix 234
with-open-file 147

with-output-to-string 58
with-places 237
with-slots 236
with-struct 235
writer’s cramp 44
&whole 95
Woods, William A. 305
workstations 348
world, ideal 109

X Windows vi, 5

zebra benchmark 396

#’ 10, 226
#( 233
#. 75
#: 128
#? 226
#[ 227
#\ 233
#{ 229
’ 225
see also: quote

, 84
,@ 86, 138
: 383
:: 382
@ 294
240, 252, 328

‘ see backquote
| 58


