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1 Introduction

Much work has been done in the last hundred years in the study of the behaviour

of parameterized systems of equations, and specifically in the study of bifurcations

of solutions. However, until recently, most of this work has been done in the

context of local bifurcations, that is bifurcations of fixed points of flows and maps.

These bifurcations are termed local because they depend only upon behaviour in

a neighbourhood of a fixed point.

More recently, work has been done in the field of global bifurcations. A global

bifurcation depends on a non-local structure in the flow; the main structures that

have been studied are homoclinic and heteroclinic orbits. These structures and

the bifurcations associated with them display a complicated variety of behaviours,

and frequently feature as an organizing centre for chaotic systems. In the present

work, we concentrate entirely on homoclinic systems.

For an evolution equation

At = f(A;µ)

with a parameter µ, a homoclinic orbit Γ associated to a fixed point p is an orbit

that has the point p as its α-limit set and as its ω-limit set. That is, there exists

a trajectory xH(t) such that

lim
t→∞

xH(t) = lim
t→−∞

xH(t) = p,

and Γ = {xH(t) : t ∈ R}. Without loss of generality, throughout the present work

we will take the fixed point p to be the origin, and we will assume the existence of

a homoclinic orbit at µ = 0. The existence of such a homoclinic orbit is in general

Chapter 1: Introduction
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a codimension one phenomenon, and thus we will consider only a one-dimensional

parameter space.

The study of homoclinic equations was begun by L.P. Shil’nikov in a series of

papers in the 1960’s (Shil’nikov [1965], [1967a], [1968], [1969], [1970]). However,

the subject was largely left untouched in the West until the recent upsurgence

of interest in the study of chaos. From 1984 onwards, this has resulted in many

more papers on the subject from a variety of authors.

Most of the early work on the subject considered systems of ordinary differential

equations of low dimension, proving results about homoclinic systems in n = 2, 3

and 4 dimensions, and we review these results below. However, work by several

authors considered the extension of the ideas and results to general n-dimensional

systems of ordinary differential equations. Work by Fowler [1990a] also reduced

the behaviour of periodic orbits of the system to fixed points of a one-dimensional

map, extending previous work of Glendinning & Sparrow [1984], Sparrow [1982].

Finally, a paper by Fowler [1990b] considered a formal extension of the ideas

used in the finite dimensional case to a class of partial differential equations on

unbounded domains. For these systems, the behaviour of the periodic orbits of

the system was shown to be related to a two-dimensional map.

In the present work, we cover the general finite dimensional case, and add in some

details passed over in previous work on the subject. We also extend Fowler’s work

for PDEs in unbounded domains to consider the effect of symmetry considera-

tions and vector-valued equations. This produces a finite-dimensional map, which

is studied in two simple cases. These results are then applied to the complex

Ginzburg-Landau equation, and compared with various numerical results.

Chapter 1: Introduction
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Moreover, we also consider the case of partial differential equations on finite

domains, formally corresponding to countably infinite dimensional systems of

ordinary differential equations. We consider such systems in the presence of

symmetry, and also consider the issues involved in the limit as the domain size

tends to infinity.

Firstly, however, for the remainder of this chapter, we present briefly the re-

sults for specific low-dimensional ordinary differential equations that have been

produced in the past.

1.1 Low Dimensional Cases

We will discover that the behaviour of a homoclinic ODE system is largely gov-

erned by the relative sizes and forms of those of the eigenvalues of the Jacobian

matrix of the system that are closest to zero. If we consider these eigenvalues

{σ} ordered in a manner:

. . . � Re σS < 0 < Re σU
� . . . (1.1)

then there are three cases for the two eigenvalues with real parts closest to zero:

1) σU = λU ,

2) σU = λU ,

3) σU = λU ± iωU ,

σS = −λS

σS = −λS ± iωS

σS = −λS ± iωS

(saddle)

(saddle-focus)

(bifocal)

(1.2)

where λU , λS , ωU , ωS ∈ R and λU 6= 0, λS 6= 0. (Note that the fourth possible

case can be obtained from case 2) by time reversal). In each case, we will examine

homoclinic systems in the lowest possible dimension for interesting behaviour. We

will present the results available, as an indication of the complexity of behaviour

associated with homoclinic systems, but without proofs.

Chapter 1: Introduction
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Saddle-Focus Systems

In this first section, we will consider one particular homoclinic system, that of

a saddle-focus system in three dimensions. This has been the most studied of

the simple examples, and produces much interesting behaviour. In this case,

x ∈ R

3 and we assume that an appropriate (linear) change of coordinates has

been performed in order to reduce the Jacobian matrix to a simple form, so that

the system of ODEs is then:

ẋ = ρµx− ωµy + Pµ(x, y, z)

ẏ = ωµx+ ρµy +Qµ(x, y, z)

ż = λµz +Rµ(x, y, z)

(1.3)

where:

1) Pµ, Qµ, Rµ are analytic functions in (x, y, z) and µ that vanish together with

their first derivatives at (0,0,0) for all µ near 0.

2) λ0 > 0 > ρ0 so that the origin is a saddle-focus. Note that we can also have

λ0 < 0 < ρ0 by time reversal.

3) When µ = 0, an orbit Γ homoclinic to the origin exists.

Figure 1.1 Homoclinic orbit Γ for a saddle-focus system

Chapter 1: Introduction
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We then have various theorems concerning the behaviour of the system as the

parameter µ varies.

Theorem 1.1.1 (Shil’nikov [1965], [1967a], [1970]): If |ρ0/λ0| < 1 (Shil’nikov’s

condition), then:

a) for µ 6= 0, equation (1.3) possesses an unboundedly growing number of peri-

odic solutions of saddle type as µ→ 0

b) for µ = 0, there exists countably many invariant sets of trajectories in phase

space, each in one to one correspondence with a full shift on two symbols.

As is usual in such studies, when we examine the dynamics on the invariant set,

by considering the symbolic dynamics of the conjugate shift map we can show

that there is a countable infinity of periodic orbits of all periods, an uncountable

infinity of aperiodic orbits, and an orbit that is dense in the invariant set (see e.g.

Wiggins [1988] §2.2).

Theorem 1.1.2 (Glendinning & Sparrow [1984], Gaspard, Kapral & Nico-

lis [1984]): If |ρ0/λ0| < 1, then on both sides of µ = 0 there exists a countable set

of tangent bifurcations where periodic orbits are generated by pairs at parameter

values µt
n accumulating at µ = 0 with rate:

lim
n→∞

µt
n+1 − µ

t
n

µt
n − µ

t
n−1

= e−2π|ρ0/ω0| (1.4)

Each tangent bifurcation is followed (as µ → 0) by a subharmonic (period dou-

bling) bifurcation occurring at µh
n, such that:

a) If 0 < |ρ0/λ0| < 1/2 then one orbit is a saddle and the other is an unstable

node that becomes a saddle at µh
n.

b) If 1/2 < |ρ0/λ0| < 1 then one orbit is a saddle and the other is a stable node

that becomes a saddle at µh
n.

Chapter 1: Introduction
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In the proofs of these two theorems, we find that the bifurcations are all connected

by a principal periodic orbit, as depicted in Figure 1.2. The period P of this prin-

cipal periodic orbit is found to be described asymptotically by µ ∼ eρ0P cosω0P .

µ

Period

Figure 1.2 Principal periodic orbit in saddle-focus case

Theorem 1.1.3 (Gaspard [1984a], Glendinning & Sparrow [1984]): If |ρ0/λ0| <

1, then there exists a twofold countable set of homoclinic systems at parameter

values µi
n (i = 1, 2) with the same sign accumulating at µ = 0 with rate:

(i = 1, 2) lim
n→∞

µi
n+1 − µ

i
n

µi
n − µ

i
n−1

= e−2π|λ0/ω0| (1.5)

where each such “double-pulse” homoclinic orbit is associated to the origin and

crosses twice an appropriately chosen surface transverse to Γ at µ = 0.

Note that we may also apply this theorem to these subsidiary orbits, to produce

further subsidiary homoclinic orbits that cross four times any surface transverse

to Γ at µ = 0. This process can continue indefinitely, giving a further indication

of the complexity of the dynamics near the homoclinic orbit.

Chapter 1: Introduction
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The main idea used in the proofs of these theorems is the construction of a

Poincaré return map on a suitable surface near the fixed point. This map is the

composition of two components. Near to the fixed point, we assume that the

behaviour is governed by the linearization of the system about the fixed point.

Away from the fixed point, we only consider those trajectories that remain close

to the homoclinic orbit (in both phase space and parameter space) and thus

approximate this part of the map with an affine map near to the homoclinic

orbit. We will not consider this in detail here, but the method used is extended

to general ordinary differential equation systems in the next chapter.

Saddle Systems

In this section we will deal with the case of a three-dimensional system possessing

a homoclinic orbit to a saddle point. This is not the smallest dimension possible

for this configuration of eigenvalues; however, the behaviour of a two-dimensional

homoclinic system does not possess many interesting features, being completely

described in the general case by the phase plane diagrams in Figure 1.3 (together

with their rotations and reflections).

We consider, then, a system of form:

ẋ = λ1x+ Pµ(x, y, z)

ẏ = −λ2y +Qµ(x, y, z)

ż = −λ3z +Rµ(x, y, z)

(1.6)

with λ1, λ2, λ3 > 0 and where Pµ, Qµ and Rµ are analytic functions that vanish

together with their first derivatives at the origin. We assume that there is a

Chapter 1: Introduction



D.M.Drysdale Homoclinic Bifurcations 8

<0 µ=0 >0µµ

Figure 1.3 Two dimensional homoclinic system phase planes

y

Γ

x

z

Figure 1.4 Homoclinic orbit associated to a saddle point, together with Poincaré

surfaces.

homoclinic orbit Γ associated to the origin at µ = 0 which approaches the origin

along the z-axis.

In a similar manner to the previous section, a Poincaré return map is constructed

on a suitable surface near to the origin. The main theorem is then:

Theorem 1.1.4 (Shil’nikov[1968], Wiggins [1988] §3.2): For sufficiently small

Chapter 1: Introduction
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µ in the system (1.6), a periodic orbit bifurcates from the homoclinic orbit into

one side of µ = 0. This periodic orbit is:

a) A stable node if λ2 > λ1 and λ3 > λ1

b) A saddle point if λ2 + λ3 > λ1 and (λ2 < λ1 or λ3 < λ1)

c) An unstable node if λ2 + λ3 < λ1.

Moreover, if λm is the eigenvalue closest to zero, and P denotes the return time

for the Poincaré map (that is, the period of the corresponding periodic orbit of

the flow) we find that as µ→ 0,

µ ∼ e−λmP .

Bifocal Systems

This section will deal with the case where both the eigenvalues with real parts

closest to zero are complex. This case is very similar to that of the saddle-focus;

many of the results of that section are directly applicable. Specifically, Shil’nikov’s

original theorem (Shil’nikov [1967a], our theorem 1.1.1) was expressed in terms

of bifocal systems.

If we consider a general bifocal system with the origin as the fixed point, and on

which a (linear) change of coordinates has been performed in order to leave it in

the form:
ẋ = −ρ1x− ω1y + f1(x, y, z, w;µ)

ẏ = ω1x− ρ1y + f2(x, y, z, w;µ)

ż = ρ2z − ω2w + f3(x, y, z, w;µ)

ẇ = ω2z + ρ2w + f4(x, y, z, w;µ)

(1.7)

Chapter 1: Introduction
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where ρ1, ρ2, ω1, ω2 > 0, the functions fi are analytic and contain only nonlinear

terms and where by time reversal if necessary we take ρ2 > ρ1. Then we may

construct a Poincaré map on a surface near the origin in the same manner as

mentioned before. By considering the properties of this map, we have:

Theorem 1.1.5 (Fowler & Sparrow [1991], Glendinning [1989]): If there exists

a homoclinic orbit Γ at µ = 0 associated to the origin of the above system, then

we have:

a) there is a continuous curve in (µ, P ) space µ = m(P ) of periodic orbits such

that the curve intersects µ = 0 an infinite number of times

b) if ω1/ω2 6= 2n for any n ∈ N, then there are sequences of double-pulse

subsidiary homoclinic orbits that accumulate on µ = 0 from both sides

c) if ω1/ω2 = 2n for some n ∈ N, then there are sequences of double-pulse

subsidiary homoclinic orbits that accumulate on µ = 0 from one side

where P denotes the period of periodic orbits.

1.2 Effects of Symmetry

The previous section presented results for homoclinic systems of ordinary dif-

ferential equations under the assumption that there were no symmetries present.

However, work has been done on the study of the behaviour of systems possessing

both homoclinic orbits and symmetries, partly under the pervading influence of

the work done on the Lorenz equations (Lorenz [1963], Sparrow [1982]), which

are invariant under such a symmetry.

Chapter 1: Introduction



D.M.Drysdale Homoclinic Bifurcations 11

As we are dealing with low dimensional systems of ordinary differential equations,

only discrete group actions are considered for symmetry effects (as continuous

groups of symmetries for ODEs yield a reduction in order, see Olver [1986] §2.5).

In fact, the level of extra complexity introduced by the addition of symmetry

considerations is such that only the application of the group Z2 has been widely

studied, although in several different representations (Tresser [1984]). The pres-

ence of such a Z2 symmetry means that a second homoclinic orbit will exist at

µ = 0, which would normally be a codimension two phenomenon.

Saddle Systems

In this case, we will give results for the saddle system (1.6) under the assump-

tion that it is invariant under the representation (x, y, z) 7→ (−x,−y, z) of the

Z2 symmetry. This is studied in Arneodo et al [1981], Glendinning [1988] and

Wiggins [1988] §3.2; moreover, the Lorenz equations fall under this case. The

method of analysis is still the construction of a Poincaré map, but now on pairs

of symmetric Poincaré surfaces.

Theorem 1.2.1: Suppose that the system (1.6) is invariant under (x, y, z) 7→

(−x,−y, z) and that at µ = 0 a pair of symmetric homoclinic orbits Γ0 and Γ1

exists. Moreover, suppose that λ2 > λ1 > λ3 > 0 and λ2 6= λ3 − λ1. Then for

sufficiently small µ, on one side of µ = 0 no trajectories of the system remain in

a small neighbourhood of Γ0 ∪ Γ1, whilst on the other side of µ = 0 there is an

invariant set on which the dynamics are topologically conjugate to the full shift

on two symbols.

Chapter 1: Introduction
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z

Γ1 Γ0

x

y

Figure 1.5 Pair of symmetric homoclinic orbits associated to a saddle point,

together with pairs of symmetric Poincaré surfaces.

This theorem tells us that in the presence of symmetry, the previously simple

behaviour of the homoclinic saddle system will instead display the complexity of

behaviour associated with the shift map. Also, with regard to the parameteriza-

tion, this complexity will appear suddenly at µ = 0, in what has been called a

homoclinic explosion.

Saddle-Focus Systems

Here we examine the results for the saddle-focus system (1.3) under the assump-

tion that it is invariant under the representation (x, y, z) 7→ (−x,−y,−z) of the

Z2 symmetry, as studied in Holmes [1980], Glendinning [1984] and Wiggins [1988]

§3.2. We write the two homoclinic orbits as Γ0 and Γ1.

For such a system, all of the results presented earlier in this chapter apply to both

of the homoclinic orbits. This means that when Shil’nikov’s condition |ρ0/λ0| < 1

Chapter 1: Introduction
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holds, there are two principal periodic orbits produced by the homoclinic bifurca-

tion, which are related by the symmetry transformation. In addition, there is also

a third branch of periodic orbits produced in the bifurcation that loop around

once near each of the homoclinic orbits. Similarly, as well as the double pulse

homoclinic orbits already mentioned, there are also sequences of double-pulse ho-

moclinic orbits that are close to one of the homoclinic orbits for one pulse, and

are close to the other for the second pulse.

When Shil’nikov’s condition does not hold, that is |ρ0/λ0| > 1, we classify periodic

orbits by assigning to each a semi-infinite sequence ·a0a1a2 . . . where each ai is 0

or 1, corresponding to whether the i-th loop of the orbit is close to Γ0 or to Γ1.

Holmes [1980] showed that at µ = 0, although the ω-limit set of the system is

Γ0∪Γ1, every possible semi-infinite sequence is realized as an approach to Γ0∪Γ1.

This shows that although the long time behaviour of such a system is simple, in

the symmetric case the approach to this behaviour can be complex.

1.3 Summary

In this chapter, we have given the results for the systems of lowest interesting

dimension for each of the three generic forms (1.2) of the eigenvalues of the

Jacobian matrix at the origin. In each case, the results were originally obtained

from the construction of a Poincaré map in two parts. The first part consisted

of the near-linear behaviour close to the origin; the second part consisted of an

affine map near to the trajectory of the homoclinic orbit. The composition of

these two maps gave a Poincaré return map on a surface near to the origin, and

in each case we considered the fixed point behaviour of this map.

Chapter 1: Introduction
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For the saddle-focus system, which has been the most studied of the three systems,

we saw that a homoclinic orbit leads to the complicated, chaotic dynamics of a

symbol shift map on an invariant set near the homoclinic orbit. We also mentioned

that near to any such homoclinic orbit, there exist subsidiary homoclinic orbits,

which will also exhibit complicated behaviour. Most importantly, however, we

deduced a pattern of bifurcations of periodic orbits near to the homoclinic orbit.

When Shil’nikov’s condition |Re σS |/σU < 1 holds, this consists of a principal

periodic orbit that has a period tending to infinity in an oscillatory manner as

µ → 0, with attendant subharmonic bifurcations on each branch, as depicted in

Figure 1.2.

For the saddle system, we again deduced the existence of a principal periodic

orbit, with period tending to infinity as µ → 0, but in all cases this orbit only

existed on one side of µ = 0. The stability of the periodic orbit was here governed

by the relative sizes of the eigenvalues, as stated in Theorem 1.1.4.

Finally, for the bifocal system, we discovered similar behaviour to that of the

saddle-focus system. We again encountered subsidiary homoclinic orbits near to

the main homoclinic orbit (although in this case such subsidiary homoclinic orbits

may only occur on one side of µ = 0 if |Im σS |/|Im σU | is an even integer), and we

found a principal periodic orbit whose period tended to infinity in an oscillatory

manner as µ→ 0.

We have seen that for the three nondegenerate cases a principal periodic orbit is

formed in a homoclinic bifurcation, with the period tending to infinity as µ tends

Chapter 1: Introduction
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to zero. The asymptotic behaviour of the period P was found to be:

µ ∼ e−λSP

µ ∼ e−λUP

µ ∼ e−λSP cosωSP

µ ∼ e−λUP

µ ∼ e−λSP cosωSP

µ ∼ e−λUP cosωUP

σU = λU ,

σU = λU ,

σU = λU ,

σU = λU ,

σU = λU ± iωU ,

σU = λU ± iωU ,

σS = −λS ,

σS = −λS ,

σS = −λS ± iωS ,

σS = −λS ± iωS ,

σS = −λS ± iωS ,

σS = −λS ± iωS ,

λS < λU

λS > λU

λS < λU

λS > λU

λS < λU

λS > λU

(1.8)

We thus see that in each of the cases,

µ ∼ e−λmP cosωmP, (1.9)

where λm = min{λU , λS}. In the next chapter, we will derive a more general

treatment of homoclinic bifurcations in ordinary differential equations, and we

will be able to reduce the Poincaré map there obtained to a one-dimensional

map. From this one-dimensional map, these asymptotic conditions for the period

of the principal periodic orbit may be recovered.

Chapter 1: Introduction
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2 Homoclinic Bifurcations in n Dimensions

In this chapter we consider the analysis of a general n-dimensional system of or-

dinary differential equations that possesses a homoclinic orbit. We consider all of

the cases covered in the previous chapter in a more general setting, and our anal-

ysis will recover several of the properties of homoclinic systems discovered there.

We will assume throughout the chapter that the system under consideration is

not invariant under any symmetries, as continuous groups of symmetries would

lead to a reduction of order in the equations (Olver [1986] §2.5), and specific rep-

resentations of discrete groups of symmetries can not be dealt with in a generic

manner.

The analysis of such n-dimensional homoclinic systems may be performed by

considering matrix integral equations (as in Shil’nikov [1967b], [1968], [1970],

Gaspard [1984b], Wiggins [1988] and with great rigour in Deng [1989]) or by

considering functional differential equations (Lin [1986]); however, we will adopt

a more symbolic approach closely following Fowler [1990a]. In either case, the

analysis proceeds by the construction of a Poincaré map in two parts, in an

exactly analogous manner to the standard construction for the low dimensional

examples in the previous chapter.

Chapter 2: Homoclinic Bifurcations in n Dimensions
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2.1 Derivation of a Poincaré Map

We consider a system of ordinary differential equations:

ẋ = f(x;µ) x ∈ Rn, µ ∈ R (2.1)

where f is an analytic function, and where the origin is a hyperbolic fixed point

for all values of µ. We assume that a homoclinic orbit Γ exists at µ = 0, and that

a local change of variables has been performed so that the Jacobian matrix of f

has been diagonalized. We then split the space Rn = WU ⊕WS into stable and

unstable eigenspaces of the system at the origin, and throughout the chapter a

subscript U or S will denote the unstable or stable component of a vector. We

also let k = dimWU , giving dimWS = n− k.

If our homoclinic orbit Γ may be parameterized as xH(t), then we suppose that:

xH ∼ etD0αH

xH ∼ etD0βH

as t→ −∞,

as t→ +∞,
(2.2)

where D0 = Df(0, 0) and αH
S = 0, βH

U = 0. By suitably setting the time origin

of xH(t) we may take α, β = O(1).

Suppose that eU and eS are the eigenvectors corresponding to the unstable and

stable eigenvalues with real parts closest to zero; then we define the surfaces

Σ = {x : |〈x, eS〉| = ν},

Σ′ = {x : |〈x, eU 〉| = ν},

where ν ≪ 1. Points on Σ sufficiently close to the homoclinic orbit will be mapped

to points on Σ′ near the homoclinic orbit, and we shall call this map ϕ. Within

the region between Σ and Σ′, x = O(ν) and we may linearize the flow as

ẋ = Dx+ g(x) (2.3)
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where D = Df(0;µ), with equivalent integral equation:

x(t) = e(t−t0)Dx0 +

∫ t

t0

e(t−τ)Dg(x(τ)) dτ. (2.4)

We have assumed that f is analytic, hence for any initial point x0, x(t) is analytic

in t for t on some bounded interval (Hartman [1982] Ch. II Thm. 1.1), and also

x(t) is analytic in x0 (Hartman [1982] Ch. V Thm. 4.1).

Let tU , tS be such that:
e−tUD0αH ∈ Σ′,

etSD0βH ∈ Σ
(2.5)

and we may take αH , βH as being such that |〈αH , eU 〉| = 1 and |〈βH , eS〉| = 1.

For general points x0, x1 on Σ and Σ′ respectively, we can define an alternative

representation β, α by:

x0 = etSD0β

x1 = e−tUD0α

|〈β, eS〉| = 1,

|〈α, eU 〉| = 1,
(2.6)

and for x0, x1 to be close to Γ, we will require that α, β = O(1). We use this

alternative representation because it will enable us to use the return time P

between visits to Σ to produce a one dimensional map.

ϕ
ν

ϕ’
Σ

Σ

H

O

’

A

Figure 2.1 Schematic representation of the flow.
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If a trajectory of the flow passes through x0, and then through x1 at a time t̃

later, we will have from (2.4) that

α = e(tU+tS)D0+t̃Dβ + etUD0

∫ t̃

0

e(̃t−τ)Dg(x(τ)) dτ. (2.7)

We will now show that this may be approximated as

α = ϕ(β) = etUD0

[
e(tS+t̃L)D0β +O

(
ν2

)]

= ePD0β + etUD0O
(
ν2

)
,

(2.8)

where P = tU + tS + t̃L and t̃L satisfies |〈et̃LD0x0, e
U 〉| = ν.

We adapt the analysis of Wiggins [1988] Section 3.2 to derive this result. Let Φt

be the flow generated by the full differential equation (2.1), and let Π = {x ∈ Σ :

〈x, eU 〉 = 0} be those points on Σ that are not mapped to Σ′ by the linear flow.

Then for x0 ∈ Σ \ Π we define t̃(x0) as the time taken to reach Σ′, that is we

define t̃ by

|〈Φ
t̃(x0)

(x0), e
U 〉| = ν.

We define an exact map ϕ: Σ → Σ′ by ϕ(x0) = Φ
t̃(x0)

(x0) and an approx-

imate map ϕL: Σ → Σ′ by ϕL(x0) = et̃L(x0)Dx0 where t̃L(x0) is given by

|〈et̃L(x0)Dx0, e
U 〉| = ν, and we explore the relationship between these two maps.

First scale x = νy so that the differential equation (2.3) becomes

ẏ = Dy + h(y, ν), (2.9)

where h(y, ν) = (1/ν)g(νy). As g = O
(
x2

)
, we notice that limν→0 h(y, ν) = 0.

We denote the flow generated by this differential equation as Ψt,ν and note that

Ψt,0(y0) = eDty0.
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In these scaled coordinates ϕ becomes

ψ(y0, ν) = Ψ
τ̃(y0,ν),ν

(y0), (2.10)

where τ̃(y0, ν) is obtained from

|〈Ψ
τ̃(y0,ν),ν

(y0), e
U 〉| = 1 (2.11)

and we have ψ(y0, 0) = ψL(y0).

Lemma 2.1.1: If f is Cr then the solution τ̃(t0, ν) of (2.11) is C
r for y0 ∈ Σ\Π

and sufficiently small ν.

Proof: Let

d(t, y0, ν) = |〈Ψt,ν(y0), e
U 〉| − 1, (2.12)

so that d(τ̃(y0, ν), y0, ν) = 0. At ν = 0, for all y0 ∈ Σ \ Π, we have a solution τ̃L

such that

d(τ̃L(y0), y0, 0) =
∣∣∣
〈
eDτ̃L(y0)y0, e

U
〉∣∣∣− 1 = 0.

Now we consider the derivative of d with respect to time:

∂d

∂t
=

∣∣∣∣
〈
∂

∂t
(Ψt,ν(y0)) , e

U

〉∣∣∣∣ .

At ν = 0, t = τ̃L(y0) we have

∂d

∂t
(τ̃L(y0), y0, 0) =

∣∣∣
〈
DeDτ̃L(y0)y0, e

U
〉∣∣∣ . (2.13)

Since D0 is hyperbolic and diagonal, and as
∣∣∣
〈
eD0τ̃L(y0)y0, e

U
〉∣∣∣ = 1 we have

that equation (2.13) is non-zero for sufficiently small µ. Hence, by the implicit

function theorem, for sufficiently small ν the solution τ̃(y0, ν) is C
r in y0 and ν.
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Theorem 2.1.2: |ψ − ψL| = O(ν).

Proof: Lemma 2.1.1 tells us that we can expand

τ̃(y0, ν) = τ̃(y0, 0) + ν
∂τ̃

∂ν
(y0, 0) +O

(
ν2

)

= τ̃L(y0) + νT1(y0, 0) +O
(
ν2

)

thus giving

ψ(y0, ν) = Ψ
τ̃(y0,ν),ν

(y0)

= Ψ
τ̃L(y0)+νT1(y0,0)+O(ν2),ν

(y0)

= Ψ
τ̃L(y0),ν

(y0) + νT1(y0, 0)
∂

∂t
Ψt,ν(y0)

∣∣∣∣
t=τ̃L(y0)

+O
(
ν2

)

= Ψ
τ̃L(y0),0

(y0) + ν
∂

∂ν
Ψt,ν(y0)

∣∣∣∣
t=τ̃L(y0)
ν=0

+ νT1(y0, 0)
∂

∂t
Ψt,ν(y0)

∣∣∣∣
t=τ̃L(y0)
ν=0

+O
(
ν2

)

= ψL + ν

[
∂Ψt,ν

∂ν
(y0) +

∂τ̃

∂ν
(y0, 0)

∂Ψt,ν

∂t
(y0)

]∣∣∣∣
t=τ̃L(y0)
ν=0

+O
(
ν2

)
,

and hence |ψ − ψL| = O(ν).

Theorem 2.1.3: |ϕ− ϕL| = O
(
ν2

)
.

Proof: We know x = νy so ϕ(νy0) = νψ(y0) and ϕL(νy0) = νψL(y0), thus

giving

|ϕ(x0)− ϕL(x0)| = |ν(ψ(y0)− ψL(y0))| = O
(
ν2

)

as required.

Thus we have completed the derivation of the inside map, equation (2.8). Re-

turning to the main theme, for the flow from Σ′ back to Σ we linearize about
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the homoclinic orbit to obtain a map ϕ′: Σ′ → Σ. If we write x = xH + y then y

satisfies

ẏ = AΓ(t)y + µ
∂f

∂µ
(xH ; 0) +G(t, y) (2.14)

where AΓ(t) = Df(xH(t), 0) and

G(t, y) = f(xH(t) + y(t);µ)− f(xH(t); 0)−AΓ(t)y − µ
∂f

∂µ
(xH(t); 0).

We let Y (t) be a fundamental matrix for the linear equation ẏ = AΓ(t)y, and

define the heteroclinic matrix H by

H(t) = e−tD0Y (t). (2.15)

We now show that H tends to a constant matrix as t → ±∞. Firstly, we adapt

a theorem from Coddington & Levinson [1955] Ch. 3 Thm. 8.1.

Theorem 2.1.4: Suppose A is a constant diagonal matrix with eigenvalues

µj ; suppose that R(t) is an integrable matrix such that

∫ ∞

0

|R(t)| dt <∞.

If ek is the k-th standard basis vector, so that Aek = µkek, then there is a solution

ϕk of

ẋ = (A+R(t))x (2.16)

and there exists t0 ∈ [0,∞) such that

lim
t→∞

ϕk(t)e
(t0−t)µk = ek.
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Proof: Choose t0 large enough so that

∫ ∞

t0

|R(τ)| dτ <
1

2
, (2.17)

then let Ψ(t) be the diagonal matrix

Ψ(t) = e(t−t0)A (2.18)

so that Ψ′ = AΨ. Now define

ψk(t) = Ψ(t)ek = e(t−t0)µkek (2.19)

for t � t0, where ek is the k-th standard basis vector.

Now we split Ψ = Ψ1 + Ψ2 where the matrix Ψ1 consists of those columns of

Ψ that have index j such that Re (µk − µj) > 0 and Ψ2 has columns with

Re (µk−µj) � 0. We see that both Ψ1 and Ψ2 are diagonal and satisfy Ψ′
i = AΨi.

We now consider the equation

ϕ(t) = ψk(t) +

∫ t

t0

Ψ1(t)Ψ
−1(τ)R(τ)ϕ(τ) dτ

−

∫ ∞

t

Ψ2(t)Ψ
−1(τ)R(τ)ϕ(τ) dτ.

(2.20)

If this equation has a solution, then we see that it will satisfy

ϕ′ = (A+R(t))ϕ.

We solve (2.20) by the usual iterative methods; define ϕ0(t) = 0 and recursively

define

ϕj+1(t) = ψk(t) +

∫ t

t0

Ψ1(t)Ψ
−1(τ)R(τ)ϕj(τ) dτ

−

∫ ∞

t

Ψ2(t)Ψ
−1(τ)R(τ)ϕj(τ) dτ.

(2.21)
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Hence we see that ϕ1(t) = ψk(t) and

|ϕ1(t)− ϕ0(t)| =
∣∣∣e(t−t0)Re µk

∣∣∣ . (2.22)

The matrix Ψ1(t)Ψ
−1(τ) is diagonal and has entries that are either zero, or are

of form hl(t) = e(t−τ)µl when Re (µk − µl) > 0. Hence |hl(t)| � e(t−τ)Re µk for

τ < t, and we thus obtain

|Ψ1(t)Ψ
−1(τ)R(τ)| � |R(τ)| e(t−τ)Re µk (2.23)

on τ < t. Similarly, we obtain

|Ψ2(t)Ψ
−1(τ)R(τ)| � |R(τ)| e(t−τ)Re µk (2.24)

for τ > t. Using these inequalities in (2.21) gives

|ϕj+1(t)− ϕj(t)|e(t0−t)Re µk
�

∫ ∞

t0

e(t0−τ)Re µk |R(τ)|
∣∣ϕj(τ)− ϕj−1(τ)

∣∣ dτ

(2.25)

and we see by induction from (2.22) and (2.17) that

|ϕj+1(t)− ϕj(t)| �

(
1

2

)j

e(t−t0)Re µk , (2.26)

which gives uniform convergence of {ϕj} on any finite subinterval of [t0,∞) to a

continuous function ϕ that solves (2.20).

We now consider the asymptotic behaviour of this solution. From the iterative

definition of ϕ we see that

|ϕ(t)| � 2e(t−t0)Re µk . (2.27)

From this and (2.24) we obtain

lim
t→0

e(t0−t)Re µk

∫ ∞

t

Ψ2(t)Ψ
−1(τ)R(τ)ϕ(τ) dτ = 0. (2.28)
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The definition of Ψ1 gives

lim
t→∞

|Ψ1(t)| e
(t0−t)Re µk = 0. (2.29)

For any ǫ > 0, we can choose t1 so that

∫ ∞

t1

|R(τ)| dτ <
ǫ

2

and we can then write
∣∣∣∣e

(t0−t)Re µk

∫ t

t0

Ψ1(t)Ψ
−1(τ)R(τ)ϕ(τ) dτ

∣∣∣∣ � ǫ+

e(t0−t)Re µk |Ψ1(t)|

∫ t1

t0

|Ψ−1(τ)R(τ)ϕ(τ)| dτ

(where we have used (2.23)). As t→∞, it follows from (2.29) that

lim
t→∞

sup

∣∣∣∣e
(t0−t)Re µk

∫ t

t0

Ψ1(t)Ψ
−1(τ)R(τ)ϕ(τ) dτ

∣∣∣∣ � ǫ

and as ǫ was arbitrary, we have

lim
t→∞

e(t0−t)Re µk

∫ t

t0

Ψ1(t)Ψ
−1(τ)R(τ)ϕ(τ) dτ = 0. (2.30)

Together, (2.28) and (2.30) give

lim
t→∞

[
ϕ(t)e(t0−t)µk − ek

]
= 0 (2.31)

as required (taking ϕk = ϕ).

We now take A = D0 and R(t) = AΓ(t) − D0, and to satisfy the hypotheses of

the theorem we only need verify that

∫ ∞

0

|AΓ(t)−D0| dt <∞. (2.32)

We know that

AΓ(t)−D0 = Df(xH(t); 0)−Df(0; 0)

= D2f(0; 0).xH(t) +O
(
(xH(t))2

) (2.33)
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and that as t→∞, xH(t)→ 0 in a manner

xH(t) ∼ etD0βH = O
(
〈βH , eS〉e−λSt

)
,

since βH
U = 0. Hence AΓ(t)−D0 = O

(
e−λSt

)
as t→∞, and the integral (2.32)

is finite, as required. Application of Theorem 2.1.4 then tells us that there are

solutions ϕk of ẋ = (A+R(t))x, that is, solutions of ẋ = AΓ(t)x with

lim
t→∞

ϕk(t)e
−µkt = eke

−µkt0 .

Such solutions must be linearly independent, and as Y (t) was a fundamental

matrix for ẏ = AΓy, we have shown that as t → ∞, the heteroclinic matrix

H(t) = e−tD0Y (t)→ e−t0D0C for some constant matrix C.

The equivalent result as t→ −∞ is produced in the same manner, showing that

the integral ∫ ∞

0

|D0 −AΓ(−t)| dt <∞,

since αH
S = 0 gives

xH(t) ∼ e−tD0αH = O
(
e−λU t

)
.

Notice also that the form of the heteroclinic matrix H(−∞) will be an invertible

matrix (corresponding to change of basis to the ϕk’s) multiplied by a diagonal

matrix et0D0 , which is thus invertible.

We now let M0 = H(∞)H−1(−∞). Then a solution of (2.14) with y(t0) = y0

can be written:

y(t) = Y (t)Y −1(t0)y0+Y (t)

∫ t

t0

Y −1(s)

[
G(s, y(s)) + µ

∂f

∂µ
(xH(s); 0)

]
ds. (2.34)

We now assume that the time of transit between Σ′ and Σ is tU + tS+γ (for some

small γ) and put t0 = −tU and t = tS + γ in equation (2.34), so that an initial
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point on Σ′ with α as in (2.6) gets mapped to a point x′0 on Σ with β′ given by

(2.6). Then, transforming to y = x− xH , we have:

β′ − βH = eγD0H(tS + γ)H−1(−tU )(α− α
H)

+ eγD0H(tS + γ)

∫ tS+γ

−tU

H−1(s)e−sD0

[
G+ µ

∂f

∂µ
(xH ; 0)

]
ds.

(2.35)

We will restrict our attention to trajectories that remain within a neighbourhood

of Γ of size ǫ; therefore y = O(ǫ) and thus the ǫ dependence of the first term in

the integral is ∫ tS+γ

−tU

H−1(s)e−sD0G(s, y(s)) ds ∼ O
(
ǫ2
)
. (2.36)

We now wish to estimate the size of the second term in the integral (2.35). Since

f(x;µ) = Dx+ g(x;µ), we put

∂f

∂µ
(xH(t); 0) =

∂D

∂µ

∣∣∣∣
µ=0

xH(t) +
∂g

∂µ
(xH(t); 0)

= D′
0x

H(t) +O
(
(xH(t))2

) (2.37)

and the second integral term becomes
∫ tS+γ

−tU

µH−1(s)e−sD0D′
0x

H(s) ds+

∫ tS+γ

−tU

µH−1(s)e−sD0gµ(x
H(s); 0) ds. (2.38)

For both of these terms, we may split the range of integration into (−tU ,−T ] ∪

(−T, T ) ∪ [T, tS + γ) for large enough T , and use the asymptotic forms of

H(s) and xH on the (−tU ,−T ] and [T, tS + γ) ranges. This shows that

the first term is of size µO(tU + tS +O(1)), and the second term is of size

µO(1) + µ exp[−O(tS , tU )]. Hence, overall the second term in the integral in

(2.35) is of size µO(tS + tU +O(1)).

We know that H(t) tends to a constant matrix as t → ±∞. As ν → 0, we have

that tU and tS tend to infinity in a manner tU , tS ∼ log(1/ν). Moreover, we can

see that tS + γ must also tend to infinity as ν → 0, so we may write

H(tS + γ)H−1(−tU ) =M0(I + o(1)) as ν → 0. (2.39)
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Finally, we Taylor expand γ as a function of y and µ, to give

γ(y, µ) = (dγ)0,0y + µ
∂γ

∂µ
(0, 0) +O

(
µy, y2

)
(2.40)

(where (dγ)0,0 is the Jacobian matrix of the derivative of γ with respect to y

evaluated at y = 0, µ = 0) using the fact that γ(0, 0) = 0, by definition of tS , tU .

As y = O(ǫ), this gives γ = O(ǫ, µ) so that eγD0 = I + O(ǫ) (presuming that

µ≪ ǫ) for the pre-factor of the right hand side of (2.35).

Putting all this together, we find that we may write (2.35) as:

β′ − βH =M(α− αH) + µc+O(ǫ) (2.41)

where c = O(tS + tU +O(1)) and M = H(tS + γ|µ=0)H
−1(−tU ) =M0(1+ o(1))

as ν → 0. Thus, for fixed ν, for a specified µ value we must have

ǫ≪ µ log ν.

There may be potential problems in the order of these choices of parameters;

however, we ignore them in the present work.

The composition of (2.41) with (2.8) thus defines our Poincaré map. This Poincaré

map is of the standard form for analysis of homoclinic systems—a linear flow near

the origin composed with an affine map near the homoclinic orbit. Depending

on the eigenvalues of the matrix D0, we may use the Poincaré map to prove

equivalent results for higher dimensions. What is different in this formulation of

the analysis is the scaling (2.6) of coordinates by the expansion and contraction

rates in the linearized flow near to the fixed point at the origin.
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2.2 Geometry of the Invariant Set

We have the approximate Poincaré map given by (2.41) and (2.8):

α = ePDβ, (2.42)

β′ − βH =M(α− αH) + µc. (2.43)

We know that P is large for small µ and ν. A neighbourhood of αH in Σ′ of size ǫ

will be mapped by the affine map of equation (2.43) to a neighbourhood of βH in

Σ of size ǫ (provided µ < ǫ). Because of the stretching in the unstable components

under the linearized flow near the origin, that portion of this neighbourhood of

βH that can be mapped back to the original neighbourhood of αH must have an

unstable component near the surface:

βU = e−PDUαH
U . (2.44)

Under the inside map ϕ, Σ is mapped to ϕ(Σ), all of whose points must have a

stable component near to the surface:

αS = ePDSβH
S . (2.45)

Note that both of these surfaces are one-dimensional, since we have free choice

of the coordinate in the eU and eS directions respectively. This corresponds to

varying the value of P in equation (2.45), and is illustrated in Figure 2.2.

Now we let:
Λ0 = {β ∈ Σ : βU = e−PDUαH

U },

Σ0 = {β ∈ Σ :
∣∣βU − e−PDUαH

U

∣∣ < ǫ},

Λ′
0 = {α ∈ Σ′ : αS = ePDSβH

S },

Σ′
0 = {α ∈ Σ′ :

∣∣αS − e
PDSβH

S

∣∣ < ǫ}.
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ϕ

H

Λ0

Σ’
WU

WS

Σ

O

Hα

β

Figure 2.2 Schematic showing Λ0 in the case that n = 3, k = 2.

Then Λ0 is (n−k)-dimensional—one component in ΣU = Σ∩WU , and (n−k−1)

components in ΣS = Σ∩WS . Similarly, Λ′
0 is k-dimensional with one component

in Σ′
S = Σ′ ∩ WS and (k − 1) components in Σ′

U = Σ′ ∩ WU . Now, both Σ0

and Σ′
0 are actually the (n − 1) dimensional sets that form the domains of ϕ

and ϕ′, but are close to the (n − k)-dimensional and k-dimensional sets Λ0 and

Λ′
0 respectively. We thus refer to Σ0 as “quasi-(n − k)-dimensional” and Σ′

0 as

“quasi-k-dimensional”.

We now see that Λ0 has codimension k− 1 as a subset of the (n− 1)-dimensional

surface Σ, and similarly Λ′
0 has codimension n − k − 1 as a subset of Σ′. If

we assume that ϕ′ has no zero eigenvalues, then ϕ′(Λ′
0) also has codimension

n− k − 1 as a subset of Σ. Hence, by the transversality theorem (Guckenheimer

& Holmes [1983] §3.1) we would expect Λ1 = ϕ′(Λ′
0)∩Λ0 to have codimension n−2

as a subset of Σ, and hence to be of dimension one. This gives a geometrical insight
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into the method used in the next section to reduce the fixed point behaviour of

the Poincaré map to a one-dimensional map in P .

We now attempt to justify some of the approximations involved. Suppose we

have β ∈ Σ such that ϕ(β) = α ∈ Σ′ and ϕ′(α) = β′. Then (2.42) implies that:

βU = e−PDUαU ,

αS = ePDSβS .
(2.46)

We now define

aU = αU − α
H
U , bS = βS − β

H
S (2.47)

so that we have
βU = e−PDU (αH

U + aU ),

αS = ePDS (βH
S + bS).

(2.48)

Hence we now convert our representation of points β ∈ Σ to a representation in

terms of P , aU , and bS . Firstly, note that since β ∈ Σ we have |〈β, eS〉| = 1,

which gives 〈bS , e
S〉 = 0 and similarly |〈α, eU 〉| = 1 implies that 〈aU , e

U 〉 = 0.

Hence bS has (n− k − 1) independent components, and aU has (k − 1) indepen-

dent components, and together with the one component of P this gives (n − 1)

components—enough to represent the (n− 1)-dimensional hypersurface Σ.

So, given β ∈ Σ, we obtain its representation in terms of P , aU , and bS by:

∣∣〈(ePDUβU , 0)
T , eU 〉

∣∣ = 1,

aU = ePDUβU − α
H
U ,

bS = βS − β
H
S

so that P = P (β), aU = aU (β) and bS = bS(β) are analytic everywhere that the

map ϕ is defined. This map is not defined for those β ∈ Σ such that the linear
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flow does not carry them to Σ′, which are those points with 〈βU , e
U 〉 = 0. Given

(P, aU , bS) we obtain the equivalent β from:

βU = e−PDU (aU + αH
U ),

βS = βH
S + bS

and we see that β = β(P, aU , bS) is analytic. Now we express the Poincaré

map Y = ϕ′ ◦ ϕ in terms of this new representation. We have Y (bS , aU , P ) =

(b′S , a
′
U , P

′) such that, if we write:

M =

(
MUU MUS

MSU MSS

)
(2.49)

we have

b′S =MSUaU +MSSe
PDS (βH

S + bS) + µcS (2.50)

and

e−P ′DU (αH
U + a′U ) =MUUaU +MUSe

PDS (βH
S + bS) + µcU , (2.51)

and P ′ is given by the condition that points must actually return to Σ, that is

|〈β′, eU 〉| = 1, which in the new representation is

∣∣∣
〈
(eP

′DU [MUUaU +MUSe
PDS (βH

S + bS) + µcU ], 0)
T , eU

〉∣∣∣ = 1. (2.52)

We now consider ẋH(t). Since xH(t) solves ẋ = f(x, 0), then taking the derivative

with respect to time gives ẍH(t) = Df(xH , 0)ẋH and hence we see that ẋH(t)

solves

ẏ(t) = Df(xH(t), 0)y(t) = AΓ(t)y(t)

exactly. Now,

xH ∼

{
etD0αH as t→ −∞
etD0βH as t→ +∞

⇒ ẋH ∼

{
etD0D0α

H as t→ −∞
etD0D0β

H as t→ +∞
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We may now repeat the construction of the affine map (2.34) but with µ set to

zero and with no error term G(t, y). We then find ẋH(t) = Y (t)Y −1(t0)ẋ
H(t0).

As we let t→∞ and t0 → −∞ this gives

etD0D0β
H = Y (t)Y −1(t0)e

t0D0D0α
H ,

which by the definition (2.15) of H gives D0β
H = H(t)H−1(t0)D0α

H . Taking

the limit, we have D0β
H =MD0α

H , that is:

D0

(
0
βH
S

)
=

(
MUU MUS

MSU MSS

)(
D0Uα

H
U

0

)
=

(
MUUD0Uα

H
U

MSUD0Uα
H
U

)
. (2.53)

Hence MUUD0Uα
H
U = 0 and as D0 is hyperbolic, D0Uα

H
U 6= 0 and is thus a zero

eigenvector of MUU , so that rank MUU � k − 1. We will assume that rank

MUU = k−1 as the most generic case, since a lower rank implies the existence of

further homoclinic orbits. This topic will be dealt with in the countably infinite

dimensional case, together with its relationship to symmetry properties.

Now let η be the unique zero eigenvector of the adjoint of MUU . Then, by (2.51),

we have:

〈η, e−P ′DUαH
U 〉 = 〈η,MUSe

PDSβH
S 〉+ 〈η, µcU 〉+ 〈η,MUSe

PDSbS − e
−P ′DUa′U 〉

(2.54)

in which the last term is small.
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2.3 A One-Dimensional Map

We now write the Poincaré map given by (2.50), (2.51) and (2.54) in the form:

〈η, e−P ′DUαH
U 〉 = 〈η,MUSe

PDSβH
S 〉+ 〈η, µcU 〉+ ϕ1(P, P

′, a′U , bS),

aU =M⊥−1
UU

[
e−P ′DUαH

U −MUSe
PDSβH

S − µcU
]

+ ϕ2(P, P
′, a′U , bS) + λD0Uα

H
U ,

b′S =MSUaU +MSSe
PDSβH

S + µcS + ϕ3(P, bS)

(2.55)

where:
ϕ1(P, P

′, a′U , bS) = 〈η,MUSe
PDSbS − e

−P ′DUa′U 〉,

ϕ2(P, P
′, a′U , bS) =M⊥−1

UU

[
e−P ′DUa′U −MUSe

PDSbS

]
,

ϕ3(aU , P, bS) =MSSe
PDSbS

and where M⊥−1

UU is the inverse of MUU on the space orthogonal to the zero

eigenvector DUα
H
U , leaving the arbitrary component λDUα

H
U in the direction of

the zero eigenvector. We may then determine λ from the condition 〈aU , e
U 〉 = 0.

Here we have converted the Poincaré map (P, aU , bS) 7→ (P ′, a′U , b
′
S) to a mixed

map (P, a′U , bS) 7→ (P ′, aU , b
′
S). This device should be compared to the mixed

initial condition integral equation used in Shil’nikov [1967a] and Gaspard [1984b].

This conversion will not affect our search for fixed points of the map; however, it

allows us to convert the expanding direction of the behaviour near the origin to

a contracting direction, making the estimation of sizes of terms much simpler.

Equation (2.55) is defined in a neighbourhood of aU = 0 = bS , P = ∞; consider

the specific neighbourhood |a′U | < ǫ, |bS | < ǫ, |e
−σmP | < ǫ where σm is the magni-

tude of the real part of the eigenvalue of D closest to zero. Then, taking µ < ǫ,
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we have:

ϕ1 = O
(
ǫ2
)
+O

(
ǫe−P ′DU

)
,

ϕ2 = O
(
ǫ2
)
+O

(
ǫe−P ′DU

)
,

ϕ3 = O
(
ǫ2
)
.

Equation (2.55)1 then gives:

〈η, e−P ′DUαH
U 〉 = O(ǫ) +O(µ) +O

(
ǫ2
)
+O

(
ǫe−P ′DU

)
.

Hence we have |e−σmP ′

| = O(ǫ), giving:

ϕ1 = O
(
ǫ2
)
, ϕ2 = O

(
ǫ2
)
, ϕ3 = O

(
ǫ2
)
.

Now consider the one-dimensional map P 7→ P ′ given by:

〈η, e−P ′DUαH
U 〉 = 〈η,MUSe

PDSβH
S 〉+ 〈η, µcU 〉. (2.56)

If we have a fixed point P̃ of this map (with |e−σmP̃ | < ǫ), then we define from it:

ãU =M⊥−1

UU

[
e−P̃DUαH

U −MUSe
P̃DSβH

S − µcU
]
+ λ̃DUα

H
U (2.57)

with λ̃ given by 〈ãU , e
U 〉 = 0, and

b̃S =MSU ãU +MSSe
P̃DSβH

S + µcS . (2.58)

These are both of sizeO(ǫ), hence we have a fixed point (P̃ , ãU , b̃S) of the Poincaré

map (2.55) to within O
(
ǫ2
)
. This argument may be made more precise by ap-

pealing to the implicit function theorem.

We now see that we have a one-dimensional map (2.56) that gives the behaviour

of fixed points of the mixed map (2.55) under parameter changes. Fixed points of

the mixed map are still fixed points of the original Poincaré map (2.42), (2.43) and

thus correspond to periodic orbits of the flow, whose periods are thus governed

by our one-dimensional map (2.56).
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2.4 Applications

We now consider in turn each of the three possible cases mentioned in Chapter 1

for the eigenvalues of the linearization near the origin.

There are three generic cases for the two eigenvalues with real parts closest to

zero, namely

1) σU = λU , σS = −λS

2) σU = λU , σS = −λS ± iωS

3) σU = λU ± iωU , σS = −λS ± iωS

(saddle)

(saddle-focus)

(bifocal)

and we note that the fourth possible case may be obtained by time reversal. We

consider each of these cases in turn.

1) Saddle Case

Define ξ = e−λUP so that (2.56) can be approximately rescaled to

ξ′ = aξδ + µ, (2.59)

where δ = λS/λU . For ξ > 0, this has the form of the map derived for the

Lorenz equations (Lorenz [1963], Sparrow [1982]). Equation (2.59) has a unique

fixed point (for ξ ≪ 1, µ ≪ 1), corresponding to the principal periodic orbit,

on one side of µ = 0, which is such that if δ > 1 then ξ ≈ µ and if δ < 1 then

ξ ≈ (−µ/a)1/δ. In either case, we have

µ ∼ e−λmP

where λm = min{λS , λU}, and this agrees with the result in Shil’nikov [1968].
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2) Saddle-Focus Case

Taking σU = λU , σS = −λS±iωS (by time reversal if necessary), we approximate

and rescale (2.56) to

e−λUP ′

= ae−λSP cos(ωSP ) + µ (2.60)

or

ξ′ = a ξδ cos(Ω log ξ) + µ, (2.61)

with Ω = ωS/λU and ξ, δ as above. This map has the same form as the one-

dimensional map derived in Arneodo et al [1985].

If δ > 1, then equation (2.61) has a unique fixed point (for small ξ, µ) on one

side of µ = 0 with µ ∼ e−λmP , as in the saddle case. However, when δ < 1, there

are multiple fixed points given by

µ ∼ ξδ cos(Ω log ξ). (2.62)

As µ→ 0, the period of the principal periodic orbit is thus given by

µ ∼ e−λSP cosωSP, (2.63)

giving Figure 2.3 which agrees with the results of Glendinning & Sparrow [1984],

§3.1. The number of roots of (2.62) is given by N ∼ (Ω/π) log(1/µ) as µ → 0,

which gives the result of Shil’nikov [1965].
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µ

Period

Figure 2.3 Principal periodic orbit in saddle-focus case

3) Bifocal Case

Similarly to above, approximation and rescaling of (2.56) yields

e−λUP ′

cosωUP ′ = ae−λSP cos(ωSP + θ) + µ. (2.64)

If we suppose that λS < λU , then fixed points corresponding to the principal

periodic orbit have

µ ∼ e−λSP cosωSP, (2.65)

which gives behaviour as for the saddle-focus case. Equivalently, if λU < λS then

the principal periodic orbit has period satisfying

µ ∼ e−λUP cosωUP. (2.66)
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2.5 Summary

In this chapter, we have derived a general method for analysing homoclinic bifur-

cations in ordinary differential equations. As has been the standard method since

the first work in the subject, we constructed a Poincaré map on a surface near

to the origin by splitting the flow into two sections. Near to the origin, we had

near-linear behaviour, and we found error bounds on the difference between the

linearized flow and the exact flow. Composed with this was the affine behaviour

away from the origin, where the flow is linearized about the homoclinic orbit.

Again, we maintained error estimates of the difference between the exact return

map and the affine map.

Throughout the chapter, we have used the slightly unusual methods of represen-

tation introduced by Fowler [1990a]. These use the asymptotic behaviour of the

homoclinic orbit to parameterize points by the time P taken for them to return to

the Poincaré surface. The geometrical reasoning behind this representation was

explained in Section 3.2, and involves the requirement that trajectories remain

close to the homoclinic orbit.

The alternative representation allows us to see the map as having (k−1) expand-

ing directions, (n−k−1) contracting directions and one other direction parameter-

ized by the return time. By converting the return map (P, aU , bS) 7→ (P ′, a′U , b
′
S)

into a mixed map (P, a′U , bS) 7→ (P ′, aU , b
′
S) we then created a map with (n− 2)

contracting directions, and thus reduced the question of existence of fixed points

of the Poincaré map to that of existence of fixed points of a one-dimensional map

by using the implicit function theorem. From this one-dimensional map, we were

able to reproduce the results of previous work that for sufficiently small µ, a pe-

riodic orbit of the flow always exists on at least one side of µ = 0, and also to
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predict that the behaviour of the period of this principal periodic orbit as µ→ 0

is

µ ∼ e−λmP cosωmP, (2.67)

where λm = min{λU , λS}, as has been found in previous work on each of the

specific cases in low dimensions.
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3 Homoclinic Bifurcations in Infinite Dimensions

In this chapter, we extend previous work by Fowler [1990b] on homoclinic bifur-

cations for partial differential equations on unbounded domains to vector-valued

partial differential equations with symmetry. A finite-dimensional map of dimen-

sion equal to the number of independent symmetries of the system is derived,

which map governs the bifurcation structure of periodic orbits of the system.

Other approaches to the problem of homoclinic bifurcations in partial differential

equations have been considered by Blázquez [1986] and Chow & Deng [1989], in

certain particular cases.

We will again utilize the standard methods of attack for homoclinic bifurcation

problems. This consists of the construction of a Poincaré map on a surface near to

the fixed point which is the α- and ω-limit of the homoclinic orbit. The map has

two components—near the fixed point, the system may be approximated by the

linearized behaviour. Away from the fixed point, the flow is taken to generate an

affine map, for points sufficiently close to the homoclinic orbit and for parameter

values sufficiently close to that at which the homoclinic orbit exists. Various

aspects of behaviour are then deduced from this Poincaré map.

In the previous chapter, we saw that for ordinary differential equations this

Poincaré map may be reduced to a one-dimensional map governing the asymp-

totic behaviour of periodic orbits of the system. We note that the generation

of this one-dimensional map was related to the existence of an exact solution of

the linearized equation, and this solution existed because of the time translation

invariance of the system.
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A previous paper by Fowler [1990b] attempted to extend formally this framework

of analysis of homoclinic systems to scalar partial differential equations in one

unbounded space variable, which were assumed to be space and time translation

invariant. In this work, a Poincaré map was constructed in an analogous fashion

to the finite dimensional case. The two translation invariances of the system gave

two exact solutions of the linearized problem, which in turn led to a reduction of

the Poincaré map to a two-dimensional map.

In this chapter, we extend this work to vector-valued PDEs, and moreover we deal

with equations with an arbitrary number q of symmetries. In specific cases in

Chapter 1, we found that the presence of discrete symmetries led to added com-

plexity in the behaviours associated with the homoclinic bifurcations, although

we could not deal with this generically. In this chapter, we will find that contin-

uous groups of symmetries can be considered in a general context, and moreover

we will find that these symmetries then lead to q exact solutions of the linearized

problem, and to a q-dimensional map.

We will construct a Poincaré map on a surface near the origin in two parts,

as before. Near to the origin (which is assumed to be our fixed point) we will

have the flow governed by the linearization of the system, and solutions can

be easily expressed in terms of Fourier transforms. Away from the origin, we

will again only consider solutions remaining close to the homoclinic orbit and

consider the linearization of the flow about this solution. The situation is made

more complicated by the existence of symmetry properties; if we have q point

symmetries of the system, we will have a q-parameter family of homoclinic orbits.

We will pick one specific homoclinic orbit, so that for each orbit of the system

that remains close to a representative of the family of homoclinic orbits, we will
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have to take into account the symmetry shift required to make that orbit close

to our specific homoclinic orbit on return to the Poincaré surface.

We consider a nonlinear PDE in one unbounded space dimension, for an n-

dimensional vector-valued function A(x, t) ∈ Rn satisfying:

∂A

∂t
= N [∂x](A;µ) (3.1)

where N is an autonomous differential operator. We will make the following

assumptions:

1) the zero vector is a solution for all µ, that is N(0;µ) = 0.

2) equation (3.1) is invariant under time and space translation, so that it has

two one-parameter symmetry groups spanned by the vector fields ∂t and ∂x

(see for example Olver [1986]) .

3) equation (3.1) is also invariant under q−2 additional one-parameter symme-

tries spanned by the vector fields v3, . . . ,vq. Furthermore, we assume that

if these infinitesimal symmetries take (x, t, A) 7→ (x̃, t̃, Ã) then:

a) each symmetry is projectable, that is (x̃, t̃) = Ξ(x, t) does not involve the

dependent variables A.

b) each symmetry does not transform time, that is t̃ = t.

4) at µ = 0, there exists a q-parameter family of homoclinic orbits associated

to the zero solution, generated by the q symmetries mentioned above.

We now pick one particular representative AH(x, t) of this family of homoclinic

orbits, and we assume that the homoclinic orbit is localized, that is AH → 0 as

x→ ±∞.
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3.1 Derivation of a Poincaré Map

We denote the Fréchet derivative (Hutson & Pym [1980] §4.4) of the nonlinear

operator N evaluated at the zero solution by L[0], and we then find that the

solutions of the linearized problem are given by

A(x, t) =

∫

R

eikxeS(k)tf(k) dk, (3.2)

where f is a complex vector-valued function given by:

f(k) =
1

2π
F [A(x, 0)](k) (3.3)

and F [A(x)](k) =
∫
A(x)e−ikx dx is the n-dimensional Fourier transform of A.

The n× n-dimensional dispersion relation matrix S(k) is given by

S(k) = e−ikxL[0](eikxI), (3.4)

which is independent of x by the space translation invariance of the system.

Moreover, we will assume that a change of variables has been performed in order

to diagonalize the matrix S(k) = diag{σ1(k), . . . σn(k)}. We also define

Uj = {k ∈ R : Re σj(k) > 0},

Sj = {k ∈ R : Re σj(k) < 0},

so that if k ∈ Uj then eσj(k)t → 0 as t → −∞ and if k ∈ Sj then eσj(k)t → 0 as

t→∞.

As t→ ±∞, AH → 0 and so approximately satisfies At = L[0]A; hence we expect

that there will exist complex vector-valued functions αH(k) and βH(k) such that:

AH ∼

∫

R

eikxeS(k)tαH(k) dk

AH ∼

∫

R

eikxeS(k)tβH(k) dk

as t→ −∞,

as t→ +∞

(3.5)
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and since AH → 0 as t → ±∞, we have αH
j (k) = 0 for k ∈ Sj , β

H
j (k) = 0 for

k ∈ Uj .

To construct our Poincaré map, we consider the surface of a ball B = {A(x) :

‖A(x)‖ = ν} about the origin, and make ν small enough so that AH(x, t) inter-

sects B exactly twice—at t = −tU and t = tS . We note that tU , tS → ∞ as

ν → 0. Recall that assumptions 2) and 3) tell us that the PDE we are studying

has symmetries spanned by the q vector fields

v1 = ∂t,v2 = ∂x,v3, . . . ,vq.

If we suppose that the j-th symmetry sends a solution A(x, t) of (3.1) to a new

solution written as Gj(ǫ)(A(x, t)), and we write:

G(ǫ)(A(x, t)) = G2(ǫ2)(. . . Gq(ǫq)(A(x, t)) . . .) ǫ = (ǫ2, . . . , ǫq),

where we keep ǫ1 separate, as it is the only symmetry involving time (by assump-

tion 3b)). Moreover, we denote by g(ǫ) the induced transformation of the Fourier

transform,

g(ǫ)(F [A(x, t)](k)) = F [G(ǫ)(A(x, t))](k). (3.6)

For example, for the space translation symmetry generated by v2 = ∂x, given

by G2(ǫ2)(A(x, t)) = A(x + ǫ2, t), we find that this induces the transformation

g2(ǫ2)(f(k)) = eikǫ2If(k) in the Fourier transform.

We now specify our Poincaré surfaces Σ and Σ′ by:

Σ = {A(x) ∈ B : ∃ǫ ‖G(ǫ)(A(x))−AH(x, tS)‖ � δ},

Σ′ = {A(x) ∈ B : ∃ǫ ‖G(ǫ)(A(x))−AH(x,−tU )‖ � δ},
(3.7)

where we choose the size ν of the ball B to be small enough that Σ ∩ Σ′ = ∅.

For general A(x) on Σ or Σ′, we define complex vector-valued functions β(k) and
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B

AH

Σ

Σ’

Figure 3.1 Schematic representation of the flow

α(k) respectively by:

A(x) =

∫

R

eikxeS(k)tSβ(k) dk

A(x) =

∫

R

eikxe−S(k)tUα(k) dk

on Σ,

on Σ′.

(3.8)

In other words, we define:

α(k) =
1

2π
eS(k)tUF [A](k)

β(k) =
1

2π
e−S(k)tSF [A](k)

for A(x) ∈ Σ′,

for A(x) ∈ Σ,

to give a representation of functions on Σ and Σ′ in terms of scaled Fourier

transforms.

Within the ball B, A satisfies At = L[0]A+ g(A), where g(A) = N(A;µ)−L[0]A

is quadratic. Neglecting g(A), we have an approximate solution

α(k) = eS(k)Pβ(k), (3.9)
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where P = t̃+ tU + tS , and t̃ is the transit time between Σ and Σ′, that is, P is

given by the condition that we map onto Σ′.

For the return map, we consider solutions that remain close to the homoclinic

orbit. A solution A(x, t) is close to the homoclinic orbit if some symmetry trans-

form of it is close to the homoclinic orbit; given such a solution, we change the

origin of time (which sets ǫ1), and then take values of the other symmetry pa-

rameters ǫ2, . . . , ǫq (which may be non-unique) so that G(ǫ)(A(x,−tU )) ∈ Σ′ and

so as to minimize ‖G(ǫ)(A(x,−tU ))−A
H(x,−tU )‖. Now we write

v(x, t) = G(ǫ)(A(x, t))−AH(x, t)

so that v(x, t) satisfies

vt = L[A
H ]v + h(AH , v) (3.10)

where

h(AH , v) = N(AH + v;µ)−N(AH ; 0)− L[AH ]v (3.11)

and L[AH ] is the Fréchet derivative of N at AH and µ = 0.

If we consider the fundamental solution T (t, t0) generated by the equation vt =

L[AH ]v, which is an operator satisfying:

∂T

∂t
= L[AH ]T t > t0,

T (t0, t0) = I,

(3.12)

then the solution of the inhomogeneous equation (3.10) satisfies

v(x, t) = T (t, t0)(v(x, t0)) +

∫ t

t0

T (t, τ)(h(AH(x, τ), v(x, τ))) dτ. (3.13)
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Notice that under the application of the symmetry G(ǫ) to A, α and β do not

necessarily transform according to (3.6). We will write the equivalent transfor-

mations as gα(ǫ) and gβ(ǫ), that is:

gα(ǫ)(α(k)) =
1

2π
eS(k)tU g(ǫ)(F [A](k)),

gβ(ǫ)(β(k)) =
1

2π
e−S(k)tSg(ǫ)(F [A](k)).

For A(x, t) ∈ Σ′, we have by definition of Σ′ and (3.8) that

∥∥∥∥
∫

R

(
eikxe−S(k)tU gα(ǫ)(α(k))− eikxe−S(k)tUαH(k)

)
dk

∥∥∥∥ � δ.

This motivates us to write

α̂ = gα(ǫ)(α)− αH . (3.14)

Similarly, if the flow maps A(x, t) to a point on Σ given by β′(k), we write

β̂ = gβ(ǫ)(β′)− βH . (3.15)

So, given A(x, t) ∈ Σ′, we change the origin of time and perform symmetry

operations so that

v(x,−tU ) =

∫

R

eikxe−S(k)tU α̂(k) dk

v(x, tS) ≈

∫

R

eikxeS(k)tS β̂(k) dk

on Σ′,

on Σ,

(3.16)

where the second equation is only approximate because, given that v(x,−tU ) ∈

Σ′, we can only say that v(x, t) hits Σ at approximately t = tS (although we can

make this as close as we like by reducing δ). Note also that this approximate

statement can only be made if there has been no rescaling of time, as assured by

assumption 3b).
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We can now use (3.13) to connect these two expressions:∫

R

eikxeS(k)tS β̂(k) dk = T (tS ,−tU )

∫

R

eikxe−S(k)tU α̂(k) dk

+

∫ tS

−tU

T (tS , τ)(h(A
H(x, τ), v(x, τ))) dk.

(3.17)

If we can define a Green’s function for vt = L[A
H ]v by

∂K

∂t
= L[AH ]K K = K(x, s, t, t0) t > t0,

K(x, s, t0, t0) = δ(x− s)I,

(3.18)

with the semiflow T given by

T (t, t0)(v(x)) =

∫

R

K(x, s, t, t0)v(s) ds (3.19)

then (3.17) becomes∫

R

eikxeS(k)tS β̂(k) dk =

∫

R

K(x, s, tS ,−tU )

∫

R

eilxe−S(l)tU α̂(l) dl ds

+

∫ tS

−tU

∫

R

K(x, s, tS , τ)h(A
H(s, τ), v(s, τ)) ds dτ

(3.20)

in terms of the Green’s function K given by (3.18).

Equation (3.13) also gives an expression for v at t = 0:

v(x, 0) = T (0,−tU )v(x,−tU ) +

∫ 0

−tU

T (0, τ)(h(AH(x, τ), v(x, τ))) dτ

=

∫

R

K(x, s, 0,−tU )

∫

R

eilxe−S(l)tU α̂(l) dl ds

+

∫ 0

−tU

∫

R

K(x, s, 0, τ)(h(AH(s, τ), v(s, τ))) ds dτ,

(3.21)

and we may also write v(x, tS) in terms of this as

v(x, tS) =

∫

R

eikxeS(k)tS β̂(k) dk

= T (tS , 0)v(x, 0) +

∫ tS

0

T (tS , τ)(h(A
H(x, τ), v(x, τ))) dτ

=

∫

R

K(x, u, tS , 0)v(u, 0) du

+

∫ tS

0

∫

R

K(x, s, tS , τ)h(A
H(s, τ), v(s, τ)) ds dτ

(3.22)
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which will enable us to use the asymptotic form of K deduced below.

The semigroup property of T gives an equivalent semigroup property for the

Green’s function K:

∫

R

K(x, u, t, τ)K(u, s, τ, t0) du = K(x, s, t, t0) (3.23)

for t0 < τ < t. From this, we formally extend the definition of K to t < τ by

taking ∫

R

K(x, u, t0, t)K(u, s, t, t0) du = δ(x− s)I, (3.24)

which is equivalent to defining T−1, and can only be done on a restricted domain.

With this extended definition of K, we can invert the expression (3.21) for v(x, 0)

to give

∫

R

eilxe−S(l)tU α̂(l) dl =

∫

R

K(x, u,−tU , 0)v(u, 0) du

−

∫

R

∫ 0

−tU

∫

R

K(x, u,−tU , 0)K(u, s, 0, τ)h(AH(s, τ), v(s, τ)) ds dτ du.

(3.25)

We now wish to find an asymptotic form of K. Since K satisfies (3.18) then as

t → ±∞, AH(x, t) → 0 and L[AH ] → L[0]. We have already considered the

solutions of vt = L[0]v in (3.2), so

K(x, s, t, T ) ≈

∫

R

eikxeS(k)tF̃±(s, k) dk (3.26)

for some matrix F̃±(s, k), and for sufficiently large T and with t0 > T . By using

(3.3) we find that in fact

F̃±(s, k) =
1

2π
e−iksI. (3.27)

Using the semigroup property (3.23) we find that

K(x, s, t, 0) ≈

∫

R

∫

R

eikxeS(k)tF̃±(u, k)K(u, s, T, 0) dk du
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as t→ ±∞ so that we can write

K(x, s, t, 0) ≈

∫

R

eikxeS(k)tF±(s, k) dk as t→ ±∞, (3.28)

where

F±(s, k) =
1

2π

∫

R

e−ikuK(u, s, T, 0) du. (3.29)

From this, as ν → 0, we find tS , tU →∞, and hence (3.25) further inverts to

α̂(k) =

∫

R

F−(u, k)v(u, 0) du

−

∫

R

∫ 0

−tU

∫

R

F−(u, k)K(u, s, 0, τ)h(AH(s, τ), v(s, τ)) ds dτ du.

(3.30)

If we now take G−(x, k) to be such that

∫
G−(x, k)F−(s, k) dk = δ(x− s)I (3.31)

then we can re-invert (3.30) to

v(x, 0) =

∫

R

G−(x, k)α̂(k) dk +

∫ 0

−tU

∫

R

K(x, s, 0, τ)h(AH(s, τ), v(s, τ)) ds dτ.

(3.32)

Comparing this expression to the original expression (3.21) we see that the net

result of the inversion and re-inversion process is to have:

G−(x, k) = lim
tU→∞

∫

R

K(x, s, 0,−tU )e
ikse−S(k)tU ds.

We also use the semigroup property (3.23) of K and the asymptotic form (3.28)

of K in (3.22) to obtain

∫

R

eikxeS(k)tS β̂(k) dk =

∫

R

∫

R

eikxeS(k)tSF+(u, k)v(u, 0) dk du

+

∫ tS

0

∫

R

∫

R

∫

R

eikxeS(k)tSF+(u, k)K(u, s, 0, τ)h(AH(s, τ), v(s, τ)) dk du ds dτ,

(3.33)
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which we invert to

β̂(k) =

∫

R

F+(u, k)v(u, 0) du

+

∫ tS

0

∫

R

∫

R

F+(u, k)K(u, s, 0, τ)h(AH(s, τ), v(s, τ)) du ds dτ.

Finally, we substitute the expression (3.32) for v(x, 0) to give

β̂(k) =

∫

R

[∫

R

F+(u, k)G−(u, l) du

]
α̂(l) dl + I ′(k) (3.34)

where

I ′(k) =

∫ tS

−tU

∫

R

∫

R

F+(u, k)K(u, s, 0, τ)h(AH(s, τ), v(s, τ)) du ds dτ, (3.35)

and we will write

M(k, l) =

∫

R

F+(u, k)G−(u, l) du. (3.36)

We can expand I ′ as

I ′(k) = I ′(k)|µ=0
ν=0

+ µ
∂I ′

∂µ

∣∣∣∣
µ=0
ν=0

+O
(
ν, νµ, µ2

)
(3.37)

and then write

c(k) =
∂I ′

∂µ

∣∣∣∣
µ=0
ν=0

.

Now, by the definition (3.11) of h, we find that

h(AH , v)
∣∣
µ=0

= N(AH + v, 0)−N(AH , 0)− L[AH ]v = O
(
‖v‖2

)
,

where v(x, t) = G(ǫ)(A(x, t)) − AH(x, t). By considering only those trajectories

that remain within a distance ν of AH , we may take ‖v‖ = O(ν) and hence

h(AH , v)
∣∣
µ=0
ν=0

= 0,

so that equation (3.37) above becomes

I ′(k) = µc(k) +O
(
ν, νµ, µ2

)
. (3.38)
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We also note, from the definitions of h, F+ (in (3.28)) and K (in (3.18)), that I ′

is independent of P and ǫ.

This leaves us with two technical questions to address. Firstly, is it actually

possible to find a solution K of (3.18); that is, can we write T as (3.19)? Secondly,

under what conditions can we formally extend the domain of K(x, s, t, t0) to

t < t0? These questions cannot be answered in the general case; however, we

may indicate suitable properties of L[AH ] which will, for instance, guarantee

existence of solutions of (3.18).

Suppose we have Hilbert spaces V and H, with V dense in H, and we define the

bilinear operator

a(t;u, v) = 〈−L[AH ]u, v〉 u, v ∈ V

We can use, for example, Temam [1988] Thm. II.3.4 to prove the existence of a

solution K of (3.18). Taking one column of K at a time, and denoting it u(t), we

seek solutions of
du(t)

dt
+A(t)u(t) = 0 u(0) = u0 (3.39)

for A(t) = −L[AH(t)], which is the first variation of (3.1). Provided u0 ∈ H,

then if

a) t 7→ a(t;u, v) is measurable,

b) ∃M <∞ such that |a(t;u, v)| � M‖u‖.‖v‖ for almost all t, and

c) ∃α > 0 such that a(t;u, u) � α‖u‖2 for almost all t (i.e. a is coercive),

then there is a unique solution u(t) of equation (3.39)with

u(t) ∈ L2(R;V ) ∩ C(R;H),

u′(t) ∈ L2(R;V ).

A suitable choice of spaces will often be H = L2(R2) and V = Hm
0 (R2). For

the example of the complex Ginzburg-Landau equation studied in Chapter 6,
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suitable choices of spaces turn out to be the complexified spaces H = L

2(R2) and

V = H

1
0(R

2); see Temam [1988] §IV.5.1.

The problem of backward uniqueness of solutions of (3.18) is more technical; we

will in general have to restrict the domain in some way. We take the following

lemma from Temam [1988] §III.6:

Lemma 3.1.1: Let H be a Hilbert space with norm | · |, and let A be a linear

positive self-adjoint operator in H, and denote V = D(A1/2) equipped with the

norm

‖v‖ =

{
|A1/2v| ∀v ∈ D(A1/2)
{(Av, v)}(1/2) ∀v ∈ D(A)

If we consider a function w

w ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A))

that satisfies
dw(t)

dt
+Aw(t) = h(t, w(t)) t ∈ (0, T ), (3.40)

where we have, for any w satisfying equation (3.40),

|h(t, w(t))| � k(t)‖w(t)‖ for a.e. t ∈ (0, T ) (3.41)

with k ∈ L2(0, T ), then if

w(T ) = 0

then

w(t) = 0 t ∈ [0, T ].

If we have two solutions K1 and K2 of (3.18) that agree at time T , we now set

w = K1(x, s, t, t0)−K2(x, s, t, t0)
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and we can see that the majorization conditions (3.40), (3.41) of the lemma

are satisfied, since L[AH ] is a linear operator. Hence it will suffice to show, in

individual cases, that

w = K1(x, s, t, t0)−K2(x, s, t, t0) ∈ L
∞(0, T ;V ) ∩ L2(0, T ;D(A)).

3.2 A Finite-Dimensional Map

We have our approximate Poincaré map given by

α(k) = eS(k)Pβ(k),

gβ(ǫ)(β′(k))− βH(k) =

∫

R

M(k, l)
[
gα(ǫ)(α(l))− αH(l)

]
dl + µc(k).

(3.42)

We will now concentrate on the latter of these two equations, and change variables

by writing

A(k) = gα(ǫ)(α(k)),

aU (k) = AU (k)− α
H
U (k),

B(k) = gβ(ǫ)(β(k)),

bS(k) = BS(k)− β
H
S (k),

(3.43)

where a subscript S or U denotes that if f(k) = (f1(k), . . . , fn(k)) then fU =

(fU1 , . . . , fUn
) and fS = (fS1 , . . . , fSn

) with

fUj
(k) =

{
fj(k) if k ∈ Uj

0 if k ∈ Sj
fSj

(k) =

{
0 if k ∈ Uj

fj(k) if k ∈ Sj

We then write (3.42)2 as

[
gβ(ǫ)(β′(k))

]
S
− βH

S (k) =

∫

U

MS(k, l)aU (l) dl +

∫

S

MS(k, l)AS(l) dl + µcS(k),

[
gβ(ǫ)(β′(k))

]
U
=

∫

U

MU (k, l)aU (l) dl +

∫

S

MU (k, l)AS(l) dl + µcU (k),

(3.44)
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where (MS(k, l))ij and (MU (k, l))ij are zero for k ∈ Ui and k ∈ Si respectively.

Define the operatorMUU by

MUUf(k) =

∫

U

MU (k, l)f(l) dl,

so that the last part of equation (3.44) gives

MUUaU (k) =
[
gβ(ǫ)(β′(k))

]
U
−

{∫

S

MU (k, l)AS(l) dl + µcU (k)

}
. (3.45)

We now turn to a consideration of the equation ut = L[A
H ]u, and its behaviour

under the symmetries of the original equation. For each of the q symmetries in

turn, we consider

∂

∂t

(
Gj(ǫj)(A

H(x, t))
)
= N(Gj(ǫj)(A

H(x, t)))

⇒
∂

∂ǫj

∂

∂t

(
Gj(ǫj)(A

H(x, t))
)
= L[Gj(ǫj)(A

H(x, t))]

(
∂

∂ǫj
(Gj(ǫj)(A

H(x, t)))

)
,

(3.46)

and by exchanging the order of derivatives and evaluating at ǫj = 0 we find that

∂tvj(x, t) = L[A
H ]vj(x, t), where

vj(x, t) =
∂

∂ǫj

(
Gj(ǫj)(A

H(x, t))
)∣∣∣∣

ǫj=0

. (3.47)

From the asymptotic form (3.5) of AH , we see that

vj(x, t) ∼

∫

R

eikxeS(k)t ∂

∂ǫj

(
gαj (ǫj)(α

H(k))
)∣∣∣∣

ǫj=0

dk

vj(x, t) ∼

∫

R

eikxeS(k)t ∂

∂ǫj

(
gβj (ǫj)(β

H(k))
)∣∣∣∣

ǫj=0

dk

as t→ −∞,

as t→∞,

so that we can take

α̂(k) =
∂

∂ǫj

(
gαj (ǫj)(α

H(k))
)∣∣∣∣

ǫj=0

β̂(k) =
∂

∂ǫj

(
gβj (ǫj)(β

H(k))
)∣∣∣∣

ǫj=0
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in the expression (3.16) for the start and end of the external flow. We then obtain

from the Poincaré map (3.42) with I ′ = 0 (as we are dealing with exact solutions)

that β̂(k) =
∫
M(k, l)α̂(l) dl, that is

∂

∂ǫj

(
gβj (ǫj)(β

H(k))
)∣∣∣∣

ǫj=0

=

∫

R

M(k, l)
∂

∂ǫj

(
gαj (ǫj)(α

H(l))
)∣∣∣∣

ǫj=0

dl. (3.48)

We know that βH
U = 0 and αH

S = 0; if we now consider only systems that have

symmetries of form such that

[
gαj (ǫj)(f(k))

]
S
= gαj (ǫj)(fS(k)),

[
gαj (ǫj)(f(k))

]
U
= gαj (ǫj)(fU (k)),

[
gβj (ǫj)(f(k))

]
S
= gβj (ǫj)(fS(k)),

[
gβj (ǫj)(f(k))

]
U
= gβj (ǫj)(fU (k)),

(3.49)

then we can split (3.48) to obtain:

∫

U

MU (k, l)
∂

∂ǫj

(
gαj (ǫj)(α

H
U (l))

)∣∣∣∣
ǫj=0

dl = 0. (3.50)

By way of example, the space translation symmetry generated by ∂x induces

a transformation g2(ǫ2) = eikǫ2I, which certainly obeys (3.49). Moreover, the

change of phase symmetry for complex scalar systems mentioned later also obeys

(3.49).

As this holds for j = 1, . . . , q, the operator MUU has a null space of dimension

at least q. We will assume, as the most generic case, that the null space has

dimension exactly q, and we let η1, . . . , ηq span the null space of the Hilbert

adjoint operatorM∗
UU (Kreyszig [1978] §3.9); then (3.45) can only be inverted if

its right hand side is orthogonal to all the ηj . That is, we require

∫

U

[
gβ(ǫ)(β′(k))

]
U
.ηj(k) dk =

∫

U

∫

S

MU (k, l)AS(l).ηj(k) dl dk

+ µ

∫

U

cU (k).ηj(k) dk

(3.51)

Chapter 3: Homoclinic Bifurcations in Infinite Dimensions



D.M.Drysdale Homoclinic Bifurcations 58

for j = 1, . . . , q. In this equation, we now write

β′(k) = e−S(k)P ′

α′(k) = e−S(k)P ′

gα(−ǫ′)(A′(k)),

AS(k) = [gα(ǫ)(α(k))]S =
[
gα(ǫ)

(
eSS(k)Pβ(k)

)]
S

=
[
gα(ǫ)

(
eSS(k)P gβ(−ǫ)(B(k))

)]
S
,

and use (3.49) to give

∫

U

gβ(ǫ) ◦ e−SU (k)P ′

I ◦ gα(−ǫ′)(A′
U (k)).ηj(k) dk = µ

∫

U

cU (k).ηj(k) dk

+

∫

U

∫

S

MU (k, l) g
α(ǫ) ◦ eSS(l)P I ◦ gβ(−ǫ)(BS(l)).ηj(k) dl dk,

which we approximate by

∫

k∈U

gβ(ǫ) ◦ e−SU (k)P ′

I ◦ gα(−ǫ′)(αH
U (k)).ηj(k) dk = µ

∫

k∈U

cU (k).ηj(k) dk

+

∫

k∈U

∫

l∈S

MU (k, l) g
α(ǫ) ◦ eSS(l)P I ◦ gβ(−ǫ)(βH

S (l)).ηj(k) dk dl

(3.52)

for j = 1, . . . , q. This has the form of a finite-dimensional map from (P, ǫ) to

(P ′, ǫ′); this is analogous to the one-dimensional map derived in the previous

chapter for homoclinic bifurcations in ordinary differential equations.

We can now seek solutions of this finite dimensional map with P = P ′; given

such a solution, and under the assumption that aU and bS are small, then we

may approximately define aU from (3.45) together with the condition of return

to Σ. From this, we can then approximately define bS from (3.44)1, and we have

an approximate fixed point of the full Poincaré map and hence a (quasi-)periodic

orbit of the full system. Examples of specific cases of this map are given and

explored in detail in the next chapter.
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3.3 Summary

In this chapter we have attempted to extend the methods of previous work on

homoclinic bifurcations in ordinary differential equations to a class of partial

differential equations in one space dimension of form

∂A

∂t
= N [∂x](A;µ),

for a n-dimensional vector-valued function A(x, t), where N is an autonomous

differential operator. We have assumed that the equation is invariant under

space and time translation, together with (q−2) other one-parameter symmetries.

Under the assumption that this system admits a homoclinic orbit, we produced

a Poincaré map in two parts. This map was defined on neighbourhoods of the

intersections of the homoclinic orbit with a ball of size ν around the origin.

Based on the standard procedure for ordinary differential equations (as in

Glendinning & Sparrow [1984], Wiggins [1988], Fowler [1990a]) and following

the method of Fowler [1990b], this Poincaré map consisted of the composition of

a near-linear part close to the origin, and a map close to the homoclinic orbit

for the return part. This return part of the Poincaré map was considerably more

complicated to produce than in the case of ordinary differential equations, involv-

ing several stages of construction and some further assumptions, most notably

the restriction of the domain of the Poincaré map to those functions for which

the inverse flow is defined.

We have used a Fourier transform representation of functions in this chapter which

enables us to see more clearly the dependence of the Poincaré map on the return

time P ; moreover, we have made explicit the dependence on the values of the
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symmetry parameters ǫ2, . . . , ǫq that transform a function as close as possible to

the homoclinic orbit. In a similar manner to the derivation of a one-dimensional

map in Fowler [1990a], we have used this to derive a finite-dimensional map,

(3.52), relating the values of P and ǫ2, . . . , ǫq between successive visits to the

Poincaré surface. In the next chapter, we will examine particular examples of

this finite-dimensional map, relating to real and complex equations with minimal

symmetries, and in Chapter 6 we will explore the form of this map for the complex

Ginzburg-Landau equation.
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4 Finite-Dimensional Map Behaviour

In the current chapter we examine in more detail the finite-dimensional map

(3.52) derived at the end of the previous chapter. In the first section, we consider

the form of the map for real or complex scalar partial differential equations. In

this case, we find that we can approximate the map and provide a simpler form

of (3.52).

In the second section, we consider two particular cases of this new finite-

dimensional map. The first case is the simplest possible example, and the second

case is only slightly more complicated. In both cases, we discuss the behaviour

of the finite-dimensional map considered purely as a map, in isolation from any

considerations of application to the PDE systems it may be derived from. In

doing this, we discover a varied array of bifurcation behaviours in the first case,

and an even richer set of possible behaviours in the second case.

4.1 Scalar PDEs

For a real scalar PDE with just the symmetries spanned by ∂t, ∂x we find that

gα2 (ǫ2) = gβ2 (ǫ2) = g2(ǫ2) = eikǫ2I and hence (3.52) becomes

∫

k∈U

eikQe−SU (k)P ′

e−ikQ′

αH
U (k)ηj(k) dk = µ

∫

k∈U

cU (k)ηj(k) dk

+

∫

k∈U

∫

l∈S

MU (k, l) e
SS(l)PβH

S (l)ηj(k) dk dl

(4.1)

for j = 1, 2, where we have written Q = ǫ2. Note that in this case S(k) =

e−ikxL[0]eikx.
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If we have a complex scalar PDE, converted into two vector (u, v) form, with

symmetries generated by ∂t, ∂x, u∂v − v∂u (where the last of these generates the

change of phase symmetry A(x, t) 7→ eiǫ3A(x, t)), then we find the extra symmetry

gives g3(ǫ3) = eiǫ3I and hence (3.52) is now

∫

k∈U

eikQ+iθe−SU (k)P ′

e−ikQ′−iθ′

αH
U (k).ηj(k) dk = µ

∫

k∈U

cU (k).ηj(k) dk

+

∫

k∈U

∫

l∈S

MU (k, l) e
SS(l)PβH

S (l).ηj(k) dk dl

(4.2)

for j = 1, 2, 3, where we have written θ = ǫ3. Since this 2-vector equation is

originally derived from a complex equation, we find that

(
αH
1

αH
2

)
=

(
αH
c

i αH
c

)
, eS(k)t = eRe σ(k)t

(
cosω(k)t − sinω(k)t
sinω(k)t cosω(k)t

)

for ω(k) = Im σ(k), σ(k) = e−ikxL[0]eikx. Hence we can write equation (4.2) in

complex form as
∫

k∈U

e−σU (k)P ′−ik(Q′−Q)−i(θ′−θ)αH
U (k)ηj(k) dk = µ

∫

k∈U

cU (k)ηj(k) dk

+

∫

k∈U

∫

l∈S

MU (k, l) e
σS(l)PβH

S (l)ηj(k) dk dl

(4.3)

for j = 1, 2, 3.

In either of the real or complex scalar cases, we may write thus the finite-

dimensional map (3.52) as

∫

k∈U

e−σU (k)P ′−ik(Q′−Q)−i(θ′−θ)wj(k) dk =

∫

l∈S

eσS(l)P yj(l) dl + µ, (4.4)

where j = 1, 2 in the real case (and also the θ terms disappear) and j = 1, 2, 3 in

the complex case, and where

wj(k) =
αH
U (k)ηj(k)∫

U
cU (l)ηj(l) dl

,

yj(l) =
βH
S (l)

∫
U
MU (k, l)ηj(k) dk∫

U
cU (k)ηj(k) dk

.

(4.5)
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As we are dealing with a homoclinic system at µ = 0, we expect to encounter

periodic orbits of high period. Hence we will consider asymptotic behaviour as

P →∞; we use the method of steepest descents to approximate the integrals in

(4.4) (Carrier et al [1966] §6.2, Bender & Orszag [1978] §6.6). This method relies

heavily on Watson’s Lemma:

Lemma 4.1.1: Consider

f(P ) =

∫ T

0

e−Pttλg(t) dt

for λ > −1 and where g(t) is such that there exist constants C, b such that

|g(t)| < Cebt for t ∈ (0, T ). Suppose also that

g(t) =

m∑

i=0

ait
i +Rm+1(t), |Rm+1(t)| < Dtm+1

for t ∈ (0, A), with D a constant. Then as P →∞ we have

f(P ) ∼
m∑

i=0

ai
Γ(λ+ 1 + i)

Pλ+1+i
+O

(
1

Pλ+m+2

)
. (4.6)

We will assume that Re σ(k) changes sign at zeros k1 < k2 < . . . < kN , so that

U and S consist of the union of segments (km, km+1), which we split further into

(km, k̃)∪(k̃, km+1). We expect that the main contributions to each of the integrals

in (4.4) will be from the neighbourhoods of the points km, where e−σU (k)P ′

or

eσS(l)P are largest. Moreover, we will assume that σ′(km) 6= 0 for m = 1, . . . , N

as the most general case.

For the right hand side of (4.4), considering one segment l ∈ (km, k̃), we deform

this into a contour C in the complex l plane on which Im (σS(l)P ) is constant
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near to the start km of the contour. Thus for the first part of this contour,

Im [σS(km) − σS(l)] = 0 and thus we may parameterize the first part of the

contour by u = σS(km)− σS(l) and write it as

∫ k̃

km

eσS(l)P yj(l) dl = eσS(km)P

∫ u=T

u=0

e−uP yj(l(u))
dl

du
du+R. (4.7)

We neglect the remainder term R, consisting as it does of contributions from the

second part of the contour where eσS(l)P will be small.

We apply Watson’s Lemma to this integral to obtain
∫ k̃

km

eσS(l)P yj(l) dl ∼ e
σS(km)P yj(km)

−σ′
S(km)P

+O
(
P−2

)
,

and then combine all of the contributions of this form to find that
∫

l∈S

eσS(l)P yj(l) dl ∼
∑

m

±
yj(km)eiωmP

σ′(km)P
as P →∞, (4.8)

where σ(km) = iωm and the upper sign is taken if (km, km+1) ⊂ U .

Similarly for the other integral in (4.4), we deform the contours into the complex

k plane so that Im (−σU (k)P
′) is constant, to obtain

∫

k∈U

e−σU (k)P ′−ik(Q′−Q)−i(θ′−θ)wj(k) dk ∼
∑

m

±
wj(km)e−iωmP ′−ikmL−i(θ′−θ)

σ′(km)P ′

(4.9)

as P →∞, where L = Q′ −Q and we take the upper sign if (km, km+1) ⊂ U . If

we assume that there are no saddle point contributions to the integrals, then the

map has the form

∑

m

cjme
−iωmP ′−ikmL−i(θ′−θ)

P ′
=

∑

m

djme
iωmP

P
+ µ (4.10)

for j = 1, 2, 3 in the complex case, and for j = 1, 2 with θ = θ′ = 0 in the real

case, where

djm = ±
yj(km)

σ′(km)
, cjm = ±

wj(km)

σ′(km)
, (4.11)

and the upper sign is taken if (km, km+1) ⊂ U .
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4.2 Symmetric Quadratic Real Systems

If the system At = N(A) is real, then σ(k) = e−ikxL[0]eikx, and by taking

complex conjugates we find that roots of Re σ(k) = 0 occur in pairs ±km with

corresponding frequency Im σ(±km) = ±ωm.

We consider the case when the system is symmetric; this implies that 〈L[0]f, g〉 =

〈f,L[0]g〉 for any f , g. Take f = g = eikx on a suitably restricted domain to give

〈L[0]eikx, eikx〉 = 〈eikx,L[0]eikx〉

⇒ σ(k)〈eikx, eikx〉 = σ(k)〈eikx, eikx〉

⇒ (σ(k)− σ(k))〈eikx, eikx〉 = 0.

Hence σ(k) ∈ R.

The simplest symmetric case is when the dispersion relation is quadratic, σ(k) =

C(k20 − k
2), so that we have km = ±k0, ωm = 0. Returning to definitions in the

previous chapter, we initially find from (3.8) that

αH(−k) = αH(k), βH(−k) = βH(k)

and from (3.28) and (3.31) we obtain

F+(s,−k) = F+(s, k), F−(s,−k) = F−(s, k),

G−(x,−k) = G−(x, k).

The definition (3.36) of M then gives M(−k,−l) = M(k, l), which in turn gives

ηj(−k) = ηj(k), using the fact that U is symmetrical about 0. Thus from (4.5)

we obtain

wj(−k) = wj(k).

(
Kj

Kj

)
, yj(−k) = yj(k).

(
Kj

Kj

)
,
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where Kj =
∫
U
cU (l)ηj(l) dl. We find that cU (−l) = cU (l) and hence Kj ∈ R, so

we find cj2 = cj1, dj2 = dj1. We can then write (4.10) as

c1ζ + c1ζ = µ+
d1
P
,

c2ζ + c2ζ = µ+
d2
P

(4.12)

with dj ∈ R and

ζ =
e−ik0L

P ′
.

We may solve this for ζ to obtain

e−ik0L

P ′
=
A

P
+ µB (4.13)

with

A =
d1c2 − d2c1
c1c2 − c2c1

, B =
c2 − c1

c1c2 − c2c1
.

Firstly, we consider the bifurcation behaviour of this map. In general, there will

be no fixed point solutions with P ′ = P , L = 0; however, solutions with P ′ = P ,

L 6= 0 may exist. We see that |A+ µPB| = 1 is the equivalent condition, which

has solutions

µP =
−(AB +BA)±

√
4|B|2 + (AB −BA)2

2|B|2
. (4.14)

This has a reality condition

|B| > |ARBI −AIBR|. (4.15)

Note that if |A| < 1, then this reality condition is automatically satisfied. Re-

turning to (4.14) for the form of the reality condition, we have

(4.15) ⇔ 4|B|2 + (AB −BA)2 > 0

⇔ 4|B|2 + (AB +BA)2 > 4|A|2|B|2

⇔ (AB +BA)2 > 4|B|2
(
|A|2 − 1

)
,
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and we see that if |A| < 1, the right hand side is < 0, and the condition is satisfied.

Equation (4.14) has two solutions; if these are of the same sign, we will find

solutions with positive P values only on one side of µ = 0, and if they are of

different sign, we find positive P solutions on both sides of µ = 0. The solutions

of (4.14) will have different signs if and only if

(AB +BA)2 < 4|B|2 + (AB −BA)2

⇔ (AB +BA)2 − (AB −BA)2 < 4|B|2

⇔ 4ABAB < 4|B|2

⇔ |A|2 < 1.

So the determining condition is that there will be solutions on both sides of µ = 0

if and only if |A| < 1.

 

µ
L

P

Figure 4.1 Bifurcation diagram for symmetric, quadratic, real scalar system, as

described by (4.14) and equation (4.16), when there are solutions on both sides

of µ = 0, that is when |A| < 1.
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Note that in either case, these solutions will thus have P ∼ 1/µ as µ → 0. For

such solutions P , we then obtain L from

L =
2nπ

k0
−

1

k0
arg(A+ µPB), (4.16)

which we note is constant since µP is constant. These solutions then correspond

to modulated travelling waves moving with wave speed L/P ∼ 2µnπ/k0.

 

µ
L

P

Figure 4.2 Bifurcation diagram for symmetric, quadratic, real scalar system, as

described by (4.14) and (4.16), when there are solutions only on sides of µ = 0,

that is when |A| > 1.

We now explore the general behaviour of the finite-dimensional map (4.13), with-

out any reference to the systems it is obtained from. We consider the map P 7→ P ′
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which is given by

P ′ = f(P ) =

∣∣∣∣
A

P
+ µB

∣∣∣∣
−1

=
|P |√

|A|2 + µP (AB +BA) + µ2P 2|B|2

(4.17)

for P > 0. To fill in the details of the shape of this function, we firstly notice

that as P →∞, we have f(P )→ (1/|µB|) and f ′(P )→ 0. Also, we can see that

f(0) = 0 and that the slope at P = 0 is f ′(0) = 1/|A|. If we now examine

f ′(P ) =
2|A|2 + µP (AB +BA)

2
(
|A|2 + µP (AB +BA) + µ2P 2|B|2

)(3/2) (4.18)

in order to look for local extrema, we find there will be exactly one local ex-

tremum, at

P̃ =
−2|A|2

µc
, (4.19)

where we have written

c = (AB +BA) = 2(ARBR +AIBI).

Another important factor is whether this extremum is above the line P ′ = P ,

that is, whether |f(P̃ )| > |P̃ |? To examine this more closely, we find

|f(P̃ )| =
2|A|

µ
√
4|A|2|B|2 − c2

> |P̃ | =
2|A|2

µ|c|

⇔ 4|A|4|B|2 < c2(1 + |A|2) (for µ > 0).

(4.20)

Taking these factors in order, we can deduce most of the shape of the function

from:

1) Is the slope at 0 greater or less than one? That is, is f ′(0) = 1/|A| greater

or less than one? If |A| < 1, the graph of f(P ) initially starts above the line

P ′ = P ; otherwise, it starts below.
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2) Is the local extremum P̃ in the range [0,∞)? Whether it is or it is not, the

other situation will hold if the sign of µ is changed.

3) Is the local extremum above the line P ′ = P? That is, does f(P̃ ) > P̃ hold?

However, these alternatives do not completely exhaust the possibilities. The

graph of f(P ) may have inflexion points, and consequently cross the line P ′ = P .

The condition for an inflexion point is that f ′′(P ) = 0, in other words:

f ′′(P ) = 0 =
−µ

(
4|A|2 + 12|A|2|B|2µP + c2µP + 4|B|2cµ2P 2

)

4 (|A|2 + µcP + |B|2µ2P 2)
(5/2)

⇔ 4|B|2c (µP )2 + (c2 + 12|A|2|B|2)(µP ) + 4c|A|2 = 0.

Hence we see that there can be at most two inflexion points, and in general there

will be either two or zero inflexion points. If there are a pair of inflexion points,

and these inflexion points cause the graph of f(P ) to cross the line P ′ = P , this

will generate two more solutions of f(P ) = P .

If we assume that there are no inflexion points, then the different possibilities for

1) – 3) above generate the graphs shown in Figure 4.3. If we examine the number

of solutions of f(P ) = P in each of these cases, we have Table 4.1.

In addition to this table, if we have a pair of inflexion points, we may add an

additional two non-zero solutions of f(P ) = P . However, we have previously

shown that there at most two non-zero solutions of f(P ) = P , and hence only

the cases in the table with no solutions can have inflexion points that cause

crossings of P ′ = P . These possibilities, namely that |A| > 1, P̃ < 0 or |A| >

1, P̃ > 0, f(P̃ ) < P̃ , are shown in Figure 4.4.

We may also consider the possibility of the existence of periodic solutions of this

finite-dimensional map. This is unfortunately quite subtle; if we seek solutions of
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f(P)

~
< OP

~
>O P

~
< OP

~
>O

P
~

)( f P
~

>P
~

)( f P
~

> P
~

)( f P
~

<

|B|µ
1

P
~

)( f P
~

<

|A|<1 |A|>1

P

P

Figure 4.3 Different possibilities for the shape of the map (4.17), depending on

the conditions |A| < 1, P̃ > 0 and f(P̃ ) > P̃ , under the assumption that there

are no inflexion points.
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|A| P̃ f(P̃ ) No. of solns of P = f(P )

< 1 > 0 > P̃ 1

< 1 > 0 < P̃ 1

< 1 < 0 > P̃ 1

< 1 < 0 < P̃ 1

> 1 > 0 > P̃ 2

> 1 > 0 < P̃ 0

> 1 < 0 > P̃ 0

> 1 < 0 < P̃ 0

Table 4.1 Numbers of solutions of f(P ) = P under various conditions, assuming

no inflexion points.

f(P)

~
>O

P
~

)( f P
~

<

P
~

< O

|A|>1 |A|>1

Pair of inflexion points

P
P

Figure 4.4 Inflexion point possibilities for the map (4.17)
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f(f(P )) = P by trusting manipulation via Mathematica (Wolfram [1991]), then

we find two new solutions other than the solutions (4.14) of f(P ) = P , given by

µP =
c (1− |A|4)±

[(
|A|2 − 1

) (
|A|2 + 1

)2 (
c2(3 + |A|2)− 4|B|2

(
1 + |A|2

)2)] 1
2

2 (|B|2 + 2|A|2|B|2 + |A|4|B|2 − c2)
(4.21)

However, applying this formula in particular cases quickly reveals that these ap-

parent solutions may not actually solve f(f(P )) = P ! These solutions are such

that P 7→ P ′ 7→ P ′′ 6= P , but P 7→ P ′, and −P ′ 7→ P . During the algebraic

manipulation of f(f(P )) = P , the square roots are squared out, and this later

allows for incorrect solutions. More careful manipulation reveals that P solves

f(f(P )) = P if and only if

−cµ|P |
√
|A|2 + cµP + |B|2µ2P 2 = (1 + |A|2)|B|2µ2P 2 + |A|2cµP + (1− |A|4).

(4.22)

(A solution of f(−f(P )) = P will have the opposite sign on the left hand side).

Hence (4.21) only gives solutions of f(f(P )) = P if also

sign(−cµ) = sign((1 + |A|2)|B|2µ2P 2 + |A|2cµP + (1− |A|4)). (4.23)

By inspection, when |A| < 1 and P̃ < 0, we have sign(−cµ) = −1 and the right

hand side of equation (4.23) is positive, so there can be no period two solutions

in this case.

In addition to (4.23), there is also a reality condition for the roots of (4.21), given

by

c2(3 + |A|2) > 4|B|2
(
1 + |A|2

)2

when |A| > 1 and

c2(3 + |A|2) < 4|B|2
(
1 + |A|2

)2
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when |A| < 1.

In Figure 4.5, we show an example of (4.17) with parameter values such that a

period two solution exists. The uniterated map has the form of a unimodal map

(Devaney [1989] §1.18); hence, depending on the values of the parameters A and

B, iteration of the map (4.17) may display any of the complicated behaviours

(such as stable period n orbits or chaotic sequences, see Feigenbaum [1980], De-

vaney [1989] §1.8) associated with such unimodal maps.

However, we do not observe the changes in behaviour with changing parameter

values associated to such unimodal maps (such as period-doubling cascades). This

is because our parameter µ does not actually control the steepness of the “hump”

in f(P ). If we examine the scaling of the map (4.17) with µ we see that

λf(λ−1P ;λµ) ≡ λ

∣∣∣∣
A

λ−1P
+ λµB

∣∣∣∣
−1

≡

∣∣∣∣
A

P
+ µB

∣∣∣∣
−1

≡ f(P ;µ).

This tells us that the shape of the map does not change with µ, only with A

and B (which are fixed for a particular system). Hence we will not observe

any qualitative change in the behaviour of the iteration of (4.17) with µ, only a

rescaling. In particular we will not observe any period-doubling cascades with

changing µ.
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P

f(
P

),
f(

f(
P

))

Figure 4.5 Iteration of the finite-dimensional map (4.17) with A = −1.3− 0.9i,

B = 1.9 + 1.5i so that |A| > 1, P̃ > 0 and f(P̃ ) > P̃ , and so that a period two

orbit exists.

4.3 Non-Symmetric Quadratic Real Systems

If we relax the assumption that the system is symmetric, but keep a quadratic

dispersion relation then we will have corresponding frequencies±ω0 = Im σ(±k0),

and the map (4.10) becomes

c1ζ + c1ζ = d1χ+ d1χ+ µ

c2ζ + c2ζ = d2χ+ d2χ+ µ
(4.24)

with

ζ =
e−ik0L−iω0P

′

P ′
, χ =

eiω0P

P
.

From this we obtain

e−ik0L−iω0P
′

P ′
=
A

P
cos(ω0P − θ) + µB (4.25)
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for A,B ∈ C, θ ∈ R, where

A cos θ =
2c2d1R − 2c1d2R
c1c2 − c1c2

,

A sin θ =
2c2d1I − 2c1d2I
c1c2 − c1c2

,

B =
c2 − c1

c1c2 − c1c2
.

Again, for solutions with P ′ = P , we need to solve

|A cos(ω0P − θ) + µBP | = 1 (4.26)

for P , given µ. As this equation is transcendental, this can no longer be done in

closed form, but we see that as µ→ 0 we will have

µ ∼
1

P
cos(ω0P − θ).

L is obtained from

k0L+ ω0P = 2nπ + arg(A cos(ω0P − θ) + µBP ) (4.27)

and we then see that the wave speed is

L

P
∼ −

ω0

k0
+ µ

2nπ

k0
.

As in the previous case, we attempt to explore the behaviour of the finite-

dimensional map (4.25), considered as a map P 7→ P ′:

P ′ = f(P ) =

∣∣∣∣
A

P
cos(ω0P − θ) + µB

∣∣∣∣
−1

=
P√

|A|2 cos2(ω0P − θ) + µcP cos(ω0P − θ) + µ2|B|2P 2
,

(4.28)

where c = AB + BA as before. We initially make some observations about the

possible shape of this function. Firstly, we can see that f(0) = 0 and that, as
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in the symmetric case, f(P ) → ±(1/µ|B|) as P → ±∞. The first derivative of

f(P ) is

f ′(P ) =

(
cµP + 2|A|2 cos(ω0P − θ)

)
(cos(ω0P − θ)− ω0P sin(ω0P − θ))

2 [|A|2 cos2(ω0P − θ) + µcP cos(ω0P − θ) + µ2|B|2P 2]
3
2

,

(4.29)

so that the slope at P = 0 is f ′(0) = (1/|A| cos θ). However, we cannot find a

limit for f ′(P ) as P → ±∞; this is because the shape of the function remains

oscillatory about ±(1/µ|B|) with decreasing amplitude as P → ±∞; example

diagrams illustrating this are shown later in the chapter.

Local extrema of the map (4.28) are much more common than in the symmetric

case. We find that P̃ is a local extremum of f(P ), that is f ′(P̃ ) = 0 if and only if

cos(ω0P̃ − θ) =
−cµP̃

2|A|2

or

tan(ω0P̃ − θ) =
1

ω0P̃
.

The second of these conditions will certainly provide a infinite number of local

extrema.

Although equations (4.26) or (4.28) may not be solved analytically, we can choose

values for A, B, ω0 and θ and solve them numerically. To do this, we initially find

a solution (µ0, P0) of (4.26) with a one-dimensional search using Brent’s method

(Press et al [1992] §9.3)1. With this solution, we then attempt continuation, using

the techniques described in Doedel [1986] and Parker & Chua [1989]. We seek a

path (µ(s), P (s)) of solutions of g(P ;µ) = f(P ;µ)−P , so that g(P (s);µ(s)) ≡ 0.

Differentiating this with respect to s, we find

dP

ds
=

−∂g
∂µ

∂g
∂P

.
dµ

ds
.

1 Specifically, we use the C routine zbrent from Press et al.
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This then gives us the direction of the unit tangent vector (µ̇0, Ṗ0) to the solution

curve (µ(s), P (s)) at (µ0, P0). To continue the branch, we take a small step along

the tangent, to

(µ1, P1) = (µ0, P0) + ∆s(µ̇0, Ṗ0).

As we still want (µ1, P1) to be a solution, we actually solve

g(P1;µ1) = 0,

(P1 − P0)Ṗ0 + (µ1 − µ0)µ̇0 −∆s = 0.
(4.30)

This is a two-dimensional root finding problem; to solve it, we use a globally con-

vergent multi-dimensional Newton’s method, as described2 in Press et al [1992]

§9.7. Note that the Jacobian of the system is

( ∂g
∂P (P1;µ1)

∂g
∂µ (P1;µ1)

Ṗ0 µ̇0

)
(4.31)

and is nonsingular at regular solution points and at simple turning points of

g(P (s);µ(s)) = 0. The determinant of this Jacobian is monitored along the

solution branch, so that a change of sign of the determinant will indicate the

existence of a zero of the determinant, which in turn may indicate the existence

of a local bifurcation point.

By choosing values for A, B, ω0 and θ at random and observing the bifurcation

diagrams resulting, we see an interesting variety of shapes of bifurcation diagrams.

One clear characteristic between different examples of these bifurcation diagrams

is whether the oscillations of a branch of solutions that is tending to P = ∞ as

µ→ 0 cross the µ = 0 axis. Examining (4.26), we see that we will have solutions

at µ = 0 if
|A cos(ω0P − θ)| = 1

⇔ cos(ω0P − θ) = ±
1

|A|
,

2 Specifically, we use the C routine newt from Press et al.
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so that there will be solutions at µ = 0 if and only if |A| � 1.

We now show three examples of bifurcation diagrams produced for different values

of A and B, with θ = 0 and ω0 = 1. These particular examples are culled from a

selection of several hundred bifurcation diagrams produced with different random

values for A and B; the range of different shapes of bifurcation curves observed

is covered by these examples.

In each case, as described above, we find an initial solution and then perform

continuation to give a (µ, P ) bifurcation diagram. The first case is shown in

Figure 4.6, and has |A| < 1 and hence no solutions at µ = 0. In this case, we

also plot the L component, and note that the 2nπ term in (4.27) means that

the L coordinate can be taken to be periodic on 2π/k0, so that we obtain a full

bifurcation picture as in Figure 4.7.

The second and third cases both have |A| > 1 and hence solutions at µ = 0.

However, these solutions are connected on two bifurcation branches in Figure

4.8, and are disconnected isolas in Figure 4.9.

In each case, the monitoring of the sign of the Jacobian reveals that the turning

points of (µ(s), P (s)) are the only local bifurcations of f(P ) = P produced by the

system. This is to be expected, since in general we will only observe codimension

one bifurcations in a system with a one-dimensional parameterization. The only

codimension one local bifurcation of fixed points of a one-dimensional map is the

saddle-node bifurcation (Wiggins [1990] §3.2), which is just another name for a

turning point of (µ(s), P (s)).

However, there is another possibility for codimension one bifurcations—that of a

period doubling bifurcation. At such a bifurcation, a pair of branches of solutions of
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-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

50

100

150
A=0.1+0.01i   B=0.2+0.2i

µ

P

Figure 4.6 Bifurcation diagram for non-symmetric, quadratic, real scalar system,

as described by equations (4.26) and (4.27). In this case, there are no solutions

at µ = 0.
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µ

L

P

Figure 4.7 Full bifurcation diagram for non-symmetric, quadratic, real scalar

system, as described by equations (4.26) and (4.27). The L component is plotted

modulo 2π/k0, because of the 2nπ term in (4.27). In this case, there are no

solutions at µ = 0.
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-0.5 0 0.5
0

20

40

60
A=1.7-3.0i  B=-2.5+2.5i

µ

P

Figure 4.8 Bifurcation diagram for non-symmetric, quadratic, real scalar system,

as described by equations (4.26) and (4.27). In this case, there are solutions at

µ = 0, which are all connected on two bifurcation branches.
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-0.6 -0.4 -0.2 0 0.2 0.4
0

5

10

15
A=2.87-1.56i   B=0.95-2.90i

µ

P

Figure 4.9 Bifurcation diagram for non-symmetric, quadratic, real scalar system,

as described by equations (4.26) and (4.27). In this case, there are solutions at

µ = 0, which are only connected in pairs.
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f(f(P )) = P bifurcates from the solution branch. Because there are no new solu-

tions of the equation g(P ) = f(P )−P = 0, these bifurcations cannot be detected

by monitoring the sign of the determinant of the Jacobian (4.31). The condition

for such bifurcations is that f ′(P ;µ) = −1 (Guckenheimer & Holmes [1983] §3.5,

Wiggins [1990] §3.2); examining the derivative f ′(P ) from (4.29) at a solution of

f(P ) = P (so that the denominator is 2), we see that such bifurcations are likely

to be common, occurring at (µ, P ) such that

(
cµP + 2|A|2 cos(ω0P − θ)

)
(cos(ω0P − θ)− ω0P sin(ω0P − θ)) = −2.

Indeed, a numerical search for such period-doubling bifurcations in the three

cases previously shown produces too many for them to be added to the diagrams

without obscuring the rest of the bifurcation diagram.

To see this from another angle, if we take some example values for A, B, ω0 and

θ and plot f(P ) against P in Figure 4.10, we see that for large P the form of

f(P ) involves rapid oscillations about P = |µB|−1. In Figure 4.11, we look more

closely at the intersections of the line P ′ = P with this function, and we find that

sections of it have the form of a unimodal map (Devaney [1989] §1.18).

In contrast to the symmetric case, the function f(P ) no longer scales with µ, and

hence as µ changes we may observe the cascades of period doubling associated

with such unimodal maps. In Figure 4.12 we draw an orbit diagram for the map

(4.28) with example values for A, B, ω0 and θ. An orbit diagram is a picture

of the asymptotic behaviour of orbits under iteration of f for varying µ values.

For each µ value, we pick a collection of initial conditions at random, iterate

them with f to eliminate transient behaviour, and then plot a number of later

points from the orbit. If we examine sections of Figure 4.12 more closely, as in

Figure 4.13, we do indeed observe the characteristic period doubling cascades of
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P

f(P)

Figure 4.10 The finite-dimensional map (4.28) with A = 0.1 + 0.01i, B =

0.2 + 0.2i, ω0 = 1 and θ = 0

unimodal maps. Hence we can see that as µ→ 0, we will get a countable infinity

of µ values accumulating at 0 at each of which the map has all of the complexity

associated with universality theory in one dimensional maps (Feigenbaum [1978],

[1979], Lanford [1982]).

4.4 Discussion

In this chapter we have derived a simple form (4.10) of the finite-dimensional

map (3.52) from the previous chapter. We then proceeded to examine two of the

simplest possible examples of this map. In the first example, taken from a real

quadratic symmetric system, we found essentially simple bifurcation behaviour,
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P

f(P)

Figure 4.11 Closer examination of the intersections of the previous diagram

but with a multitude of different cases depending upon the coefficients A and B

of the map. In all cases, bifurcation branches approached P = ∞ as µ → 0 in a

manner µ ∼ P−1. In some cases, branches existed on either side of µ = 0, and

in others only on one side. Moreover, in some cases period two solutions could

be found, although no period-doubling bifurcations or other bifurcations could

occur with varying µ.

The second example was slightly more complicated, relaxing the assumption of

symmetry in the dispersion relation to consider a real quadratic system. In this

case, analytical solution of fixed point condition of the map (4.10) was no longer

possible, and numerical continuation methods were employed instead. A variety

of possible bifurcation behaviours were observed for particular instances of the

map, characterized by oscillatory behaviour of solution branches. In all instances,

both saddle-node and period-doubling bifurcations were observed on the solution
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Figure 4.12 Orbit diagram for the finite-dimensional map (4.28) with A = 0.1+

0.01i, B = 0.2 + 0.2i, ω0 = 1 and θ = 0
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Figure 4.13 Closer examination of a section of the previous diagram, showing a

cascade of period doubling.
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branches of f(P ) = P .

In both cases, the L component of the finite-dimensional map (4.10) could be sep-

arated out from the P behaviour, leading to simpler bifurcation analysis. Also, in

both cases this P 7→ P ′ behaviour was considered purely as a bifurcation problem

in a one-dimensional map, without reference to the possible partial differential

equations that these maps have originally been derived from. The hope is then

that these fixed points of the finite-dimensional maps will correspond to solutions

of the original partial differential equations via some form of shadowing. If such

is the case, then a fixed point P ′ = P , L 6= 0 of the finite-dimensional map will

correspond to a modulated travelling wave solution of the PDE. If we have finite

periodic sequences

P0 7→ (P1, L1) 7→ . . . (Pq, Lq) = (P0, Lq),

then these will correspond to travelling wave solutions of the PDE with periodic

modulation. We cannot extend this correspondence to infinite sequences of P ,

but such sequences still remain indicative of the level of complexity of behaviour

possible in such systems.
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5 Homoclinic Bifurcations in

Countably Infinite Dimensions

In Chapter 2 we considered the general case of an n-dimensional ordinary dif-

ferential equation system, and in Chapter 3 we considered the case of a partial

differential equation on an unbounded domain. In this chapter we consider par-

tial differential equations on a bounded domain, having a countably infinite set

of eigenfunctions. This case is very much an extension of the finite dimensional

case given in Chapter 2; however, here we consider the effects of symmetry (as in

the case of partial differential equations on unbounded domains). Moreover, we

consider the limit as the domain size tends to infinity, and thus the relationship

between the finite-dimensional maps derived in chapters 2 and 3.

This situation is extremely important for numerical applications, since any in-

tegration of a partial differential equation will have to be performed on a finite

domain, in a manner that is in general equivalent to an integration of a (large)

set of ordinary differential equations.

We consider a system

ut(x, t) = F (u(x, t);µ) (5.1)

for x on a bounded domain D, and where F is a nonlinear differential operator.

In general we will expect periodic boundary conditions. We assume that:

1) the origin is a fixed point for all values of µ, that is F (0;µ) = 0.

2) equation (5.1) is invariant under q − 1 one-parameter symmetries spanned

by the vector fields v2, . . . , vq, generating transformations A(x, t) 7→

Gj(ǫj)A(x, t) such that each transformation is projectable and also does not

involve the time variable t.
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3) at µ = 0 an orbit AH(x, t) homoclinic to the origin exists.

Note that we select one of the q-parameter family of possible homoclinic orbits

existing at µ = 0 that are related by these symmetry transforms, and denote it

by uH(t).

Moreover, we assume that L = DF (0; 0) has a countably infinite, complete or-

thonormal set of eigenfunctions such that:

1) there are no zero eigenvalues.

2) there is a unique eigenvalue with largest negative real part, and a unique

eigenvalue with smallest positive real part.

5.1 Derivation of a Poincaré Map

We write the eigenvalues of L as {λk}k∈K , with corresponding eigenfunctions

{vk(x)}k∈K where K = I ∪ J , I ∩ J = ∅ and Re λi > 0 (i ∈ I) , Re λj < 0

(j ∈ J). Thus I corresponds to an unstable eigenspace, and J corresponds to a

stable eigenspace.

We then see that the general solution of the linearized equation

ut = Lu (5.2)

is

u(x, t) =
∑

k∈K

fke
λktvk(x), (5.3)
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B

uH

Σ

Σ’

Figure 5.1 Schematic representation of the flow

where fk = 〈u(x, 0), vk〉.

We now define suitable surfaces for our Poincaré map to pass through. Firstly,

let

B = {u : ‖u‖ = ν}.

The homoclinic orbit must pass through B on its way to the origin as t → ±∞.

We define −tU < tS as times such that uH(−tU ), u
H(tS) ∈ B. Note that as

ν → 0, tU , tS → ∞, and we let ν be small enough that tU and tS are unique.

We now define our Poincaré surfaces to be neighbourhoods of size δ of these

intersections. However, as we actually have a continuous family of homoclinic

orbits, we will define the surfaces as consisting of those points that may be shifted

into a neighbourhood of the homoclinic orbit by symmetry transforms, that is

Σ = {u ∈ B : ‖G(ǫ)u− uH(tS)‖ � δ},

Σ′ = {u ∈ B : ‖G(ǫ)u− uH(−tU )‖ � δ}.
(5.4)

The function uH(tS) ∈ Σ may be decomposed as uH(tS) =
∑

K f+k vk, and we

write this in a rescaled form as βH
k = e−λktSf+k ; similarly uH(−tU ) =

∑
K f−k vk
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and we write αH
k = eλktU f−k so that

uH(tS) =
∑

K

βH
k e

λktSvk, uH(−tU ) =
∑

K

αH
k e

−λktU vk.

In fact, for any v ∈ Σ we decompose v into the form

v =
∑

K

βke
λktSvk, (5.5)

and for any v ∈ Σ′ we decompose v into the form

v =
∑

K

αke
−λktU vk. (5.6)

If we consider a point v0 ∈ Σ sufficiently close to the homoclinic orbit, it is

mapped through to Σ′. We let t̃ be the time taken to reach Σ′, so there is an

orbit v(t) of the system with v(0) = v0 ∈ Σ, v(t̃) ∈ Σ′. If we now decompose v(0)

and v(t̃) in the above form, and moreover assume that within the ball B we may

approximate the system with the linear system (5.2), then the general solution

(5.3) will give

αk = eλkPβk, P = tS + tU + t̃ (5.7)

for k ∈ K.

We now construct a return map outside the ball B in a similar manner to previous

chapters by linearizing about the homoclinic orbit. We write

w = G(ǫ)u− uH

for an ǫ that minimizes the distance ‖w‖ on Σ′. The system then becomes

w = L[uH ]w + h(uH , w),

where h(uH , w) = F (uH +w;µ)− F (uH ; 0)−L[uH ]w. We start from a point on

Σ′, which we write in the form

w =
∑

K

e−λktU (g(ǫ)αk − α
H
k )vk =

∑

K

e−λktU α̂kvk, (5.8)
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with

α̂k = g(ǫ)αk − α
H
k . (5.9)

For points remaining sufficiently close to the homoclinic orbit, these will be

mapped to Σ by the flow, to a point that we will represent as

w =
∑

K

eλktS (g(ǫ)β′
k − β

H
k )vk =

∑

K

eλktS β̂kvk, (5.10)

with

β̂k = g(ǫ)β′
k − β

H
k . (5.11)

Here we have taken g(ǫ) to be the transformation in the coefficients of the vk

induced by the symmetry transform G(ǫ), that is, if A =
∑

K fkvk then G(ǫ)A =
∑

K g(ǫ)fkvk. Note also that we are abusing notation; the transformation g(ǫ)

will almost certainly mix up different αk, and hence should be written

g(ǫ)αk = [g(ǫ) ({αl}l∈K)]k .

For example, if we have a standard set of sine and cosine basis functions for

functions periodic on [−L,L], and

f(x) = a0 +

∞∑

1

an cos
nπx

L
+

∞∑

1

bn sin
nπx

L

(so that {αk}k∈K = {a0, b1, a1, b2, a2, . . .}), then we find that

f(x+ ǫ) = ã0 +

∞∑

1

ãn cos
nπx

L
+

∞∑

1

b̃n sin
nπx

L

with

ã0 = a0, ãn = an cos
nπǫ

L
+ bn sin

nπǫ

L
, b̃n = bn cos

nπǫ

L
− an sin

nπǫ

L
,

(5.12)
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which thus shuffles pairs of αks. We will, however, make the assumption that the

symmetry transform g(ǫ) will not mix up αk between I and J . This is analogous

to the assumption (3.49) made in Chapter 3.

By definition, the homoclinic orbit takes a time tU + tS to flow from Σ′ to Σ;

we will assume that for points sufficiently close to the homoclinic orbit, the time

taken to flow from Σ′ to Σ will also be approximately tU+tS . By the autonomous

nature of the equation, we shift the origin of time so that

w(x,−tU ) =
∑

K

α̂ke
−λktU vk(x),

w(x, tS) =
∑

K

β̂ke
λktSvk(x).

We can thus obtain an affine map of the form

β̂k =
∑

l∈K

mklα̂k + µck, (5.13)

which we combine with (5.7) to give our Poincaré map

αk = eλkPβk, g(ǫ)β′
k = βH

k +
∑

l∈K

mkl(g(ǫ)αl − α
H
l ) + µck. (5.14)

5.2 Reduction to a Finite-Dimensional Map

We now derive a finite-dimensional map from this Poincaré map, in an analogous

manner to the method used in Chapter 2. Firstly, we note that the homoclinic

orbit must approach the origin along the stable manifold as t → ∞, and along

the unstable manifold as t→ −∞. This implies that

βH
i = 0 i ∈ I, αH

j = 0 j ∈ J.
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We now split the Poincaré map for i ∈ I, j ∈ J recalling that K = I ∪ J .

αi = eλiPβi,

αj = eλjPβj ,

g(ǫ)β′
i =

∑

l∈I

mil(g(ǫ)αl − α
H
l ) +

∑

l∈J

milg(ǫ)αl + µci, i ∈ I,

g(ǫ)β′
j = βH

j +
∑

l∈I

mjl(g(ǫ)αl − α
H
l ) +

∑

l∈J

mjlg(ǫ)αl + µcj , j ∈ J.

(5.15)

We consider the third of these equations in the form

∑

l∈I

mil(g(ǫ)αl − α
H
l ) = g(ǫ)β′

i −

{
∑

l∈J

milg(ǫ)αl + µci

}
, i ∈ I. (5.16)

We also consider w̃ = uHt , which is an exact solution of the linearized equation

wt = Df(uH ; 0)w. Since uH has asymptotic behaviour

uH ∼
∑

I

αH
i e

λitvi

uH ∼
∑

J

βH
j e

−λjtvj

as t→ −∞

as t→∞

we find that
w̃ ∼

∑

I

αH
i λie

λitvi

w̃ ∼
∑

J

−βH
j λje

−λjtvj

as t→ −∞

as t→∞

As in previous cases, we can work through the derivation of the outside return

map, but working with an exact solution, to find that on taking α̂i = λiα
H
i ,

equation (5.16) turns out to be

∑

l∈I

milλlα
H
l = 0 ∀i ∈ I.

We now consider the space of I-tuples, and define MII to be an operator on that

space given by MII({αi}i∈I) = {α
′
i}i∈I with

α′
i =

∑

l∈I

milαl,
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which we see is a linear operator with a zero eigenvector w1 = {λiα
H
i }i∈I .

This zero eigenvector exists because of the autonomous nature of the equation, so

that it is a consequence of the invariance of equation (5.1) under the symmetry

generated by ∂t. The other symmetries of the equation will also produce similar

results. As in Chapter 3, if we consider

∂

∂ǫj
Gj(ǫj)A

H(x, t)

∣∣∣∣
ǫj=0

for j = 2, . . . , q, then we find that this is also an exact solution of the equation

linearized about the homoclinic orbit. In the same manner as in Chapter 3, we

then find that, under the assumption that each of the symmetries does not mix

components in the stable and unstable directions, we have

wj =

{
∂

∂ǫj
gj(ǫ)α

H
i

∣∣∣∣
ǫj=0

}

i∈I

as a zero eigenvector of MII . Hence we have at least q zero eigenvectors of MII ;

we will assume (in the generic case) that there are no other zero eigenvectors, for

otherwise other homoclinic orbits must exist. As promised in Chapter 2, we now

consider the effects of the existence of multiple zero eigenvectors of MII .

Lemma 5.2.1: If MII has s � 2 zero eigenvectors, then there is an (s − 1)-

parameter family of homoclinic orbits associated to the origin at µ = 0.

Proof: A homoclinic orbit exists at µ = 0 if and only if we can find a point on

Σ′ of form (5.6) with αj = 0 for j ∈ J , which is mapped around to a point on Σ

of form (5.5) with βi for i ∈ I.

Suppose that the s zero eigenvectors of MII are {w1
i }i∈I , . . . , {w

s
i }i∈I ; then we

let
αi = αH

i + Λ1w
1
i + . . .Λsw

s
i ,

αj = 0,
(5.17)

Chapter 5: Homoclinic Bifurcations in Countably Infinite Dimensions



D.M.Drysdale Homoclinic Bifurcations 97

where we have free choice of s − 1 of the Λi (provided that they are suitably

small), and the last is constrained by the condition that the point be on Σ′, that

is by ∥∥∥∥∥
∑

I

αie
−λitU vi

∥∥∥∥∥ = ν. (5.18)

With this choice of αi, we clearly see that MII({αi − α
H
i }i∈I) = 0. Hence at

µ = 0, our approximate affine map (5.13) for the outside flow will map this point

onto Σ with decomposition (5.5) such that βi = 0 for i ∈ I—in other words, a

point on the stable eigenspace of the origin.

We now use the implicit function theorem to show that this approximate solution

implies the existence of an equivalent homoclinic orbit. Firstly we restrict our

attention to the subspace of Σ′ where the components in the directions of each of

the zero eigenvectors ofMII are specified (thus enabling us to invert the operator

MII on the subspace), that is the space

S =

{
{αi}i∈I : 〈{αi}, {w

j
i }〉 = Λj ,

∥∥∥∥∥
∑

I

αie
−λitU vi

∥∥∥∥∥ = ν

}
. (5.19)

We now consider the function

f(X; δ) =MII .X +
1

δ
E(δX, δ)

on this space, where E(x, δ) is the error term in the original affine map, and is of

size

E(x, δ) = O
(
x2

)
+O(δ).

We thus find that

lim
δ→0

1

δ
E(δX, δ) = E0 <∞,

so we take X0 = −(MII |S)
−1E0+

∑s
l=1 Λlw

l; hence f(X0; 0) = 0. The derivative

of the function f at X0 is MII |S , which is invertible, so by the implicit function
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theorem, for all sufficiently small δ, we have a solution X(δ) of f(X; δ) = 0.

Writing x(δ) = δX(δ), we now have a solution of

MIIx(δ) + E(x(δ), δ) = 0

for sufficiently small δ, which is thus an exact homoclinic orbit. Since we have

free choice of s − 1 of the parameters Λ1, . . .Λs used in the definition of S, we

have thus shown the existence of an s− 1 parameter family of homoclinic orbits,

defined for sufficiently small δ, that is defined in a neighbourhood of the original

homoclinic orbit.

Thus we see that a q parameter family of homoclinic orbits leads to q zero eigen-

vectors of MII , and s zero eigenvectors of MII lead to an s− 1 parameter family

of homoclinic orbits, each of which may be time translated, giving an s parameter

family of homoclinic orbits.

Using the standard l2 inner product on the space of I-tuples, we let {ηji }i∈I for

j = 1, . . . , q be the zero eigenvectors of the adjoint operator ofMII . Then, taking

the inner product of equation (5.16) with {ηji }i∈I gives

∑

I

g(ǫ)β′
iη

j
i =

∑

I

∑

J

mijg(ǫ)αjη
j
i +

∑

I

µciη
j
i .

We now write β′
k = e−λkP

′

α′
k for k ∈ K and write αj = eλjPβj for j ∈ J to give

∑

I

g(ǫ)
(
e−λiP

′

α′
i

)
ηji =

∑

I

∑

J

mijg(ǫ)
(
eλjPβj

)
ηji +

∑

I

µciη
j
i ,

and approximate α′ ≈ g(−ǫ′)αH , β ≈ g(−ǫ)βH to give

∑

I

g(ǫ)
(
e−λiP

′

g(−ǫ′)αH
i

)
ηji ≈

∑

I

∑

l∈J

mijg(ǫ)
(
eλlP g(−ǫ)βH

l

)
ηji +

∑

I

µciη
j
i .

(5.20)

Chapter 5: Homoclinic Bifurcations in Countably Infinite Dimensions



D.M.Drysdale Homoclinic Bifurcations 99

In exactly the same manner as in Chapter 2, this map is dominated by those

eigenvalues closest to zero; in fact, the results of Chapter 2 extend exactly to this

case. However, in this case we may also have symmetry effects modifying the

behaviour of the map—one example of such a modification is given later in this

chapter.

We may also approximately revert from this finite-dimensional map to a solution

of the full Poincaré map. Given a solution P = P ′ = P̃ of (5.20) we define

α̃i = αH
i +M⊥−1

II {e
−λiP̃αH

i − µci −
∑

J

mije
λj P̃βH

j }+

q∑

l=1

Λlw
l
i,

where M⊥−1

II is the inverse of MII on the space orthogonal to its zero eigenspace,

and where Λlw
l is the component in the direction of the zero eigenvector wl. We

have free choice of q − 1 of these Λl, and the last is determined by the condition

that {α̃k}k∈K is on the surface Σ. From this we define

β̃j = βH
j +

∑

i∈I

mji(α̃i − α
H
i ) +

∑

l∈J

mjle
λlP̃βH

l + µcj

to give an approximate solution (P̃ , {α̃i}i∈I , {β̃j}j∈J) of the full Poincaré map

(5.14).

5.3 Moving from Bounded to Unbounded Domains

In this section we consider the relationship between the results of this chapter

and those of Chapter 3. We are essentially considering the limit as domain size

tends to infinity; we will see that this corresponds to the limit as a Fourier series

becomes a Fourier transform.
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This limit is very important in practical applications. Any numerical simulation

of a partial differential equation system will perforce be a finite-dimensional ap-

proximation to that system. Hence, we must consider the difference in expected

behaviours between the two, and the conditions under which numerical results

should simulate the full system.

We will compare the equation At = N(A;µ) on [−L,L] and on (−∞,∞) for

scalar (possibly complex) A(x, t) under the assumption that both cases possess

the same symmetries. In practice, for the required impulse symmetry, this will

usually mean the imposition of periodic boundary conditions on the finite domain

case. We shall briefly work through the derivations of the finite dimensional maps

in both cases, trying to maintain the structural similarity between expressions in

the two cases.

The Poincaré map in the finite domain case was found above to be

αk = eλkPβk,

g(ǫ)β′
k − β

H
k =

∑

l∈K

mkl(g(ǫ)αl − α
H
l ) + µck,

(5.21)

and the equivalent infinite domain map (3.42) from Chapter 3 was

α(k) = eS(k)Pβ(k),

gβ(ǫ)(β′(k))− βH(k) =

∫

R

M(k, l)
[
gα(ǫ)(α(l))− αH(l)

]
dl + µc(k).

(5.22)

In both cases, these maps were split in parts according to the stable and unstable

eigenspaces of the linearization of the system at the origin. In the finite domain

case, we defined an operator MII on the space of I-tuples {αi}i∈I ; in the infinite

domain case we defined an operatorMUU on the space of functions f(k) defined

for k ∈ U . A necessary condition for satisfaction of the Poincaré map was then

shown to be

MII{g(ǫ)αl − α
H
l }l∈I =

{
g(ǫ)β′

i −
∑

l∈J

milg(ǫ)αl − µci

}

i∈I

(5.23)
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in the finite domain case and

MUU (gα(ǫ)(α(k))U − α
H
U (k)) =

[
gβ(ǫ)(β′(k))

]
U
−

{∫

S

MU (k, l)g
α(ǫ)(α(k))U dl + µcU (k)

}

(5.24)

in the infinite domain case.

In both cases we showed that the existence of q symmetries implies the existence

of q exact solutions of the system linearized about the homoclinic orbit. In turn,

these exact solutions corresponded to zero eigenfunctions of the operator MII

or MUU , and we let {ηji }i∈I and ηj for j = 1, . . . , q be the corresponding zero

eigenvectors of the adjoint operators M∗
II andM∗

UU respectively.

By taking inner products in a suitable space, the previous two equations imply

that
∑

I

g(ǫ)β′
iη

j
i =

∑

I

∑

l∈J

milg(ǫ)αlη
j
i +

∑

I

µciη
j
i (5.25)

in the finite domain case, and

∫

U

[
gβ(ǫ)(β′(k))

]
U
.ηj(k) dk =

∫

U

∫

S

MU (k, l)g
α(ǫ)(αS(k)).ηj(k) dl dk

+ µ

∫

U

cU (k).ηj(k) dk

(5.26)

in the infinite domain case, for j = 1, . . . , q in both cases. Writing:

β′
k = e−λkP

′

α′
k ≈ e

−λkP
′

g(−ǫ′)αH
k ,

αj = eλjPβj ≈ e
λjP g(−ǫ)βH

j for j ∈ J

and

β′(k) = e−S(k)P ′

α′(k) ≈ e−S(k)P ′

gα(−ǫ′)αH(k),

αS(k) = eS(k)PβS(k) ≈ e
S(k)P gβ(−ǫ)βH

S (k),
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these become

∑

I

g(ǫ)
(
e−λiP

′

g(−ǫ′)αH
i

)
ηji =

∑

I

µciη
j
i+

∑

I

∑

l∈J

milg(ǫ)
(
eλlP g(−ǫ)βH

l

)
ηji

and

∫

k∈U

gβ(ǫ) ◦ e−S(k)P ′

I ◦ gα(−ǫ′)(αH
U (k)).ηj(k) dk = µ

∫

k∈U

cU (k).ηj(k) dk

+

∫

k∈U

∫

l∈S

MU (k, l) g
α(ǫ) ◦ eS(l)P I ◦ gβ(−ǫ)(βH

S (l)).ηj(k) dk dl

(5.27)

for j = 1, . . . , q. These are now both in the form of finite-dimensional maps from

(P, ǫ) to (P ′, ǫ′); we can clearly see the structural similarity between the finite

and infinite domain cases.

We will now proceed to consider the asymptotic behaviours of these maps as the

period P increases towards infinity; here, we will discover that the two alternatives

produce different results. In order to do this, we must take a more specific example

of each type.

We will assume that the system is one dimensional, has only two symme-

tries (namely time and space translation invariance) and that the finite do-

main system has a countable set of eigenfunctions given by {sin(nπx/L)}∞n=1,

{cos(nπx/L)}∞n=0. Recalling that σ(k)eikx = L[0]eikx, we then see that the cor-

responding eigenvalues for these eigenfunctions are σ(nπ/L) for both sin(nπx/L)

and cos(nπx/L). These are arranged in the form

{λk}
∞
0 = { σ(0), σ(π/L), σ(π/L), σ(2π/L), σ(2π/L), . . .},

{vk}
∞
0 = { 1, sin(πx/L), cos(πx/L), sin(2πx/L), cos(2πx/L), . . .},
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and we see that the unstable and stable eigenspaces are

I =

{
i ∈ N : Re λi = Re σ

(⌊
i+ 1

2

⌋
π/L

)
> 0

}
,

J =

{
j ∈ N : Re λj = Re σ

(⌊
j + 1

2

⌋
π/L

)
< 0

}

(where ⌊x⌋ denotes the largest integer less than or equal to x), so that 2n ∈ I ⇔

(2n− 1) ∈ I and 2m ∈ J ⇔ (2m− 1) ∈ J .

Recalling the form of the transformation of coefficients under the spatial transla-

tion symmetry as given in (5.12), we write the finite domain map as

∑

2n∈I

e−σ(nπ/L)P ′

{[
cos

(
nπ(Q−Q′)

L

)
αH
2n−1 + sin

(
nπ(Q−Q′)

L

)
αH
2n

]
ηj2n−1

+

[
cos

(
nπ(Q−Q′)

L

)
αH
2n − sin

(
nπ(Q−Q′)

L

)
αH
2n−1

]
ηj2n

}
=

µ
∑

I

ciη
j
i+

∑

2n∈I

∑

2m∈J

eσ(mπ/L)P

(
m2n−1 2m−1 m2n−1 2m

m2n 2m−1 m2n 2m

)(
βH
2m−1

βH
2m

)
.

(
ηj2n−1

ηj2n

)

(5.28)

for j = 1, 2, with Q = ǫ2. Under these conditions, we find that

gα(ǫ) = gβ(ǫ) = eikQ.

Writing σ(k) = S(k) as before, we find that the infinite domain equation is

∫

k∈U

e−σ(k)P ′

eik(Q−Q′)αH
U (k).ηj(k) dk = µ

∫

k∈U

cU (k).ηj(k) dk

+

∫

k∈U

∫

l∈S

MU (k, l) e
σ(l)PβH

S (l).ηj(k) dk dl

(5.29)

for j = 1, 2. In both cases we now make approximations appropriate to the limit

P → ∞. For the finite domain case, as noted earlier, the map is dominated by

those eigenvalues that are closest to zero. We let N ∈ I, M ∈ J be such that
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σ(Nπ/L), σ(Mπ/L) are the eigenvalues with real parts closest to zero; then we

approximate (5.28) by

e−σNP ′

[
aj cos

(
Nπ(Q−Q′)

L

)
+ bj sin

(
Nπ(Q−Q′)

L

)]
= µ+ dje

σMP , (5.30)

where we have written σN = σ(Nπ/L), σM = σ(Mπ/L).

The steepest descent approximations introduced in Chapter 4 are now applied to

the map in the infinite domain case to yield

∑

m

cjme
−iωmP ′+ikm(Q−Q′)

P ′
=

∑

m

djme
iωmP

P
+ µ, (5.31)

where we recall that σ(km) = iωm ∈ iR. If we assume for simplicity that the

dispersion relation has only one root (although this assumption is unrealistic),

we have
cje

−iω0P
′

eik0(Q−Q′)

P ′
= µ+

dje
iω0P

P
(5.32)

for j = 1, 2. The eigenvalues in the finite domain case are those with real parts

closest to zero—we find that

N,M =

⌊
k0L

π

⌋
,

⌈
k0L

π

⌉
,

where ⌊x⌋ denotes the largest integer less than or equal to x, and ⌈x⌉ denotes

the smallest integer greater than or equal to x. Hence for large L, we find that

σN → 0+ + iω0 and σM → 0− + iω0 and we may approximate the finite domain

map as

e−iω0P
′

[aj cos (k0(Q−Q
′)) + bj sin (k0(Q−Q

′))] = µ+ dje
iω0P . (5.33)

The two maps given by equation (5.33) and equation (5.32) clearly have con-

siderable structural similarity, as we might expect. However, we notice that the

infinite domain case has the 1/P and 1/P ′ factors.
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The presence of these factors is the fundamental difference between the finite-

dimensional maps in the finite and infinite domain cases. This difference is caused

by the different orders of the limits L → ∞ and P → ∞. In the finite domain

case, for a fixed L however large, in the limit of P → ∞ the sums over the

eigenvalues will be dominated by the single eigenvalue with real part closest to

zero. If we could hold P fixed and increase L then more of the eigenvalues would

provide a contribution, tending to a continuous dispersion relation in the limit.

In the infinite domain case we have already taken the limit L→∞ and so when

we make approximations in the limit P → ∞ we have a continuous dispersion

relation whose integral is evaluated using the method of steepest descents, leading

to the extra 1/P factor.

In any numerical simulation, we are perforce restricted to simulations of finite

systems. It is worthwhile considering the conditions under which we may hope

that such simulations provide a useful insight into the behaviour of equivalent

infinite systems. Näıvely, we might expect that, if the spatial recurrence distance

Q−Q′ is small compared to the domain size, edge effects would be reduced and

that behaviour appropriate to the infinite domain case might appear. To make

this insight more precise, we consider the left hand side of (5.28) in the form

S =
∑

2n∈I

e−σ(nπ/L)P ′

einπ(Q−Q′)/Lχn. (5.34)

We need to consider the conditions for large P ′ and L when the approximation

lim
P ′→∞

S = e−σ(Nπ/L)P ′

eiNπ(Q−Q′)/LχN

of S by just the dominant term becomes inappropriate. In this case, more terms

of the sum contribute, and as L→∞ the sum becomes an approximation (Bender

& Orszag [1978] §6.7) of the Riemann integral

lim
L→∞

S =

∫

k∈U

e−σ(k)P ′

eik(Q−Q′)χ(k) dk,
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which is the left hand side of (5.29). Continuing the limits, we see that

lim
L→∞

lim
P ′→∞

S = χNe
−σ(k0)P

′

eik0(Q−Q′),

lim
P ′→∞

lim
L→∞

S =
χ(k0)e

−σ(k0)P
′

eik0(Q−Q′)

P ′
.

The distinguishing feature between the two cases is the comparative size of the

term σ(nπ/L)P ′. This in turn will depend upon the form of the dispersion relation

σ(k). If we assume that this dispersion relation is polynomial in k with highest

power kd, then the condition for multiple terms to contribute towards the sum S

is that

P ′ ≪ Ld, (5.35)

which gives us a practical test to apply to numerical simulations.

5.4 Summary

In this chapter we have formally extended the finite dimensional results of Chap-

ter 2 to countably infinite dimensional systems, namely partial differential equa-

tions on bounded domains. As usual, this study involved the creation of a

Poincaré map in two parts, on surfaces near to the homoclinic point.

However, unlike the finite dimensional case, in this chapter we were able to ex-

amine the effects of symmetry considerations, in a similar manner to that of

Chapter 3.

Having obtained this Poincaré map, we then reduced it to a finite-dimensional

map in the same way as in chapters 2 and 3 for ordinary differential equations and
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partial differential equations on unbounded domains respectively. As in Chap-

ter 3, this finite-dimensional map had dimension equal to the number of contin-

uous one-parameter symmetries of the system.

In Section 5.3, we directly compared the results of chapter 3 with those of this

chapter, comparing the infinite domain case with the finite domain case in the

limit as domain size tends to infinity. This yielded two maps with considerable

structural similarity, but nonetheless with significant differences. On examina-

tion, this difference was found to stem from the order in which the limits of large

domain size and large recurrence time were taken; this examination also yielded

a practical criterion to apply to numerical results in order to determine which

results are likely to be appropriate.
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6 The Ginzburg-Landau Equation

In this chapter we consider the behaviour of one particular system, the Ginzburg-

Landau equation. This equation arises in many different contexts, for example

in hydrodynamic instability theory (Bretherton & Spiegel [1983]), chemical sys-

tems governed by reaction-diffusion systems (Kuramoto & Tsuzuki [1975]), as

an example of a λ − ω system (Sherratt [1994]), in models of superconductivity

(Tinkham [1975]) and in the nonlinear growth of convection rolls in the Rayleigh-

Bénard problem. The equation is thus very general, and we will study it in

isolation, without reference to any underlying physical system.

The Ginzburg-Landau equation is

At = αA+ β|A|2A+ γAxx (6.1)

for A(x, t) ∈ C with α, β, γ ∈ C. We find1 that it has symmetries spanned by the

vector fields ∂x, ∂t and v∂u−u∂v for A = u+iv. In other words, we have time and

space translation invariance together with a phase shift invariance. This phase

shift invariance enables us to assume that α ∈ R by replacing A 7→ e−Im αtA.

This equation is studied in Temam [1988] IV.5.1 and VI.7.1, where existence re-

sults for both the equation itself and the first variation equation used at (3.18)

are shown. Results from particular parameter regimes of the system, taken with

periodic boundary conditions, demonstrate finite dimensional behaviour (Doering

et al [1988]), period doubling cascade behaviour (Keefe [1985]) and bifurcations

to 2- and 3-tori (Takác̆ [1991]), thus displaying a wide range of the properties

1 Using MULIE, Head [1991]
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exhibited by nonlinear and chaotic systems. In this chapter, we study a pa-

rameterization of the system as given in Bretherton & Spiegel [1983], under the

condition of large domain length.

In the first section, we calculate the form of the finite-dimensional map derived in

chapters 3 and 4. This will leave us with several undetermined coefficients; in the

second section, we examine numerical results from integrations of the system, in

order to demonstrate the possibility of the existence of a homoclinic orbit, and in

order to collate a set of data appropriate to fitting these undetermined coefficients.

The third section will then discuss the method used to fit these coefficients, and

the fourth section will use the values obtained to generate a bifurcation picture

from the finite-dimensional map that may be compared to the actual numerical

results.

6.1 Form of the Finite-Dimensional Map

We first apply the results of Chapter 3 to this equation, in order to determine

the form of the finite-dimensional map that will govern the behaviour of periodic

orbits of the system near to homoclinicity. The linearization of (6.1) at the origin

is

L[0]A = αA+ γAxx, (6.2)

which gives the dispersion relation σ(k) = α−γk2. Hence, provided k20 = α/γR >

0 we have
S = (−∞,−k0) ∪ (k0,∞),

U = (−k0, k0).

We also notice that

σ(±k0) = −i
γIα

γR
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and as σ′(k) = −2γk we have

σ′(±k0) = ∓2γ

(
α

γR

) 1
2

.

In the previous chapter, we applied the method of steepest descents to various

integrals. This required us to deform the subsection S of the k-axis into a contour

in a complex k-plane given by Im σ(k) = constant. In this case, this is given by

the hyperbola

k2R + 2
γR
γI
kRkI − k

2
I =

α

γR
. (6.3)

We thus deform (−∞,−k0) into the lower section of the left half of this hyperbola

(as indicated by AB on Figure 6.1), and deform (k0,∞) into the upper section of

the right half of this hyperbola (indicated by ED).

Similarly, we want to deform U into a contour on which Im σ(k) = constant,

which is again the hyperbola (6.3). In this case we have the two sections marked

BC and FE, together with the asymptote COF linking them, given by

kI
kR

=
γR
γI
−

(
1 +

γ2R
γ2I

) 1
2

.

D

E

F

O

C

B

A

Figure 6.1 Steepest descent contours for the complex Ginzburg-Landau equation
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As in Bretherton & Spiegel [1983], we consider the one parameter subfamily of

the complex Ginzburg-Landau equation derived as a model of overstable two-

dimensional thermohaline convection, with

α = 1, β = i, γ = 1 + i(µ+ µ0) (6.4)

(which has no additional point symmetries to those in the general case). The

parameter µ0 is included to allow us to shift µ so that the homoclinic orbit exists

at µ = 0. In this case, equation (6.1) becomes

At = A+ i|A|2A+ (1 + i(µ+ µ0))Axx. (6.5)

If we now consider the form of the finite-dimensional map derived in Chapter 4,

we find that (4.10) becomes

cj1e
iµ0P

′

eik0L−i(θ′−θ)

P ′
+
cj2e

iµ0P
′

e−ik0L−i(θ′−θ)

P ′
=

dj1e
−iµ0P

P
+
dj2e

−iµ0P

P
+ µ

(6.6)

for j = 1, 2, 3, where

cj1 =
−wj(k0)

2(1 + iµ0)
,

dj1 =
yj(k0)

2(1 + iµ0)
,

cj2 =
wj(−k0)

−2(1 + iµ0)
,

dj2 =
−yj(−k0)

−2(1 + iµ0)
,

(6.7)

and wj , yj are as in (4.5). We recall that k0 = 1 here, and write ∆ = θ′ − θ and

Dj = dj1 + dj2 to obtain

cj1e
iµ0P

′

ei(L−∆)

P ′
+
cj2e

iµ0P
′

e−i(L+∆)

P ′
=
Dje

−iµ0P

P
+ µ (6.8)

for j = 1, 2, 3.

Recalling the results for non-symmetric, quadratic, real systems in Chapter 4, we

see that the values of the coefficients cj1, cj2, Dj for j = 1, 2, 3 and µ0 may well
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have a significant effect on the bifurcation structure of the system. As such, we

defer numerical investigation of the bifurcation structure of this map until we can

provide some actual values for these coefficients.

6.2 Numerical Results

We have not so far shown any evidence of the existence of a homoclinic orbit

for this system. An analytical proof of the existence of such an orbit would be

very difficult; however, numerical results do provide some evidence of homoclinic

behaviour. However, there are some difficulties associated with numerical inte-

gration of these equations.

We have performed multiple numerical simulations of the system with parameters

as at (6.4), initially using a fixed timestep Crank-Nicholson method implemented

by the present author in C++. The discretized version of (6.1) reads

An+1
j −An

j

∆t
=

1

2

[
(α+ β|An

j |
2)(An+1

j +An
j )

+
γ

(∆x)2
(
(An+1

j+1 − 2An+1
j +An+1

j−1 ) + (An
j+1 − 2An

j +An
j−1)

)]
,

where An
j = A(xj , tn) and ∆t, ∆x are the time and space step respectively.

This gives a tridiagonal implicit system that may be solved using standard band-

diagonal techniques (Press et al [1992] §2.4). The integration code imposed zero

boundary conditions at x = 0, L = 20 and started with an initial condition of

small amplitude noise.

For the parameter values (6.4) together with µ + µ0 = 1, this reproduces the

qualitative behaviour observed by Bretherton & Spiegel [1983] in their Figure 3
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Figure 6.2 Numerical integration of the Ginzburg-Landau equation (6.5) with

µ + µ0 = 1 with zero boundary conditions at x = 0, 20, displaying aperiodic

behaviour. Diagram was produced by a fixed timestep Crank-Nicholson method

with ∆t = 0.005. Time runs vertically up the page, with the height of the curve

at each x given by |A|2, and with the colour of the curve given by arg A.
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Figure 6.3 Alternative visualization of the previous diagram. Colour is used to

represent the phase of the solution, with the intensity of the colour representing

the norm.
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(produced by a pseudo-spectral code). We would expect a homoclinic system to

have aperiodic orbits that come close to the homoclinic orbit, and thus exhibit

the sort of “pulse” behaviour shown in Figure 6.2 for µ+ µ0 = 1, L = 20.

We hope to simulate the behaviour of the equation on an infinite domain, and

setting L = 20 is hardly infinite. However, when we examine (in Figure 6.4) the

results of an integration with domain size L = 200, in a section [100, 120], we see

that the qualitative behaviour is the same, thus indicating that edge effects do

not overly influence the results of the integration.

In addition to this Crank-Nicholson method, two other methods of integration

were used, both taken from the NAG FORTRAN libraries. Both of these meth-

ods use the method of lines (Ames [1992] §1.9) to reduce the partial differential

equation to a system of ordinary differential equations. The first method, NAG

library routine D03PGF, then implements Gear’s method to integrate these ordi-

nary differential equations. The second method, NAG library routine D03PCF,

implements a backwards differentiation formula method to integrate the ODEs.

Both of these methods produced results at µ + µ0 = 1 that were again qual-

itatively similar to those obtained with the Crank-Nicolson method and those

depicted in Bretherton & Spiegel [1983].

Moreover, despite the complicated spatio-temporal structure observed in Figure

6.2, when these three methods were all started with the same initial condition

(namely A(x, 0) = (1 + i)e(x−10)2), with the same gridsize (N = 1025) and the

same timestep (∆t = 0.001), they remained in close correlation for a considerable

period (relative to the timescale of “pulses”), as shown in Figure 6.5. Similarly,

when intermediate values from one integration were used as starting points for
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Figure 6.4 Numerical integration of the Ginzburg-Landau equation (6.5) with

µ + µ0 = 1, on the space domain x ∈ [0, 200], depicting only the section x ∈

[100, 120]. Diagram was produced by a fixed timestep Crank-Nicholson method

with ∆t = 0.005.
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the three integration methods, we again saw close correlation as shown in Figure

6.6.

We note, however, that these numerical results do not extend to larger parameter

values. Integrations using the Crank-Nicholson method for µ+ µ0 = 100 did not

match those in Bretherton & Spiegel [1983]; integrations of the system approached

fixed point behaviour for large µ, and displayed periodic behaviour for values

around µ+ µ0 = 10.

The alternative numerical simulation using D03PGF and Gear’s method also pro-

duced different results from both the results given in Bretherton & Spiegel [1983]

and from the results obtained with the Crank-Nicolson integrator, becoming nu-

merically unstable so that at µ + µ0 = 100 finite time blow-up was observed

with this method. The third numerical method, using D03PCF, produced results

at µ + µ0 = 100 that were different again from any of the previously described

simulations, giving spatio-temporally chaotic solutions.

However, since the methods all agree within the range of our investigations, we do

not concern ourselves further with the inconsistencies observed at more extreme

parameter values.

The integrations of the Ginzburg-Landau system (6.5) near µ + µ0 = 0 produce

aperiodic, “pulse”-like structures. Our hypothesis is that these pulses correspond

to orbits of the system that are close to a homoclinic orbit, and which should

therefore have space and time separations governed by the finite-dimensional

map (6.8).

In order to attempt to compare the numerical results with the theoretical results,

the following procedure was adopted. For a given value of µ + µ0, the system
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Figure 6.5 Numerical integrations of the Ginzburg-Landau equation (6.5) with

µ + µ0 = 1 and with zero boundary conditions, for three different integration

methods. From left to right, these are: Crank-Nicholson method implemented

in C++, NAG routine D03PGF using the method of lines and Gear’s method, and

NAG routine D03PCF using the method of lines and a backwards differentiation

formula method, all with timestep 0.001 and 1025 gridpoints.
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Figure 6.6 Numerical integrations of the Ginzburg-Landau equation (6.5) with

µ + µ0 = 1 and with zero boundary conditions, for three different integration

methods, as in the previous diagram. In each case, the initial data was taken

from a previous run of the Crank-Nicolson integrator.
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was integrated forwards to t = 70 with the Crank-Nicolson integration system.

The output from this integration was fed into a program that searched for local

maxima, as depicted in Figure 6.7, where the dots indicate a local maximum in

just the x direction (we shall call these “ridge points”), and the crosses indicate

a local maximum in both the x and t directions.

We then attempt to determine recurrence times P between local maxima along a

“ridge”. We do this by attempting to follow the ridge between maxima, by looking

for the nearest ridge point in the next timestep to the current ridge point. If the

nearest ridge point is too far away from the current ridge point, we abandon the

search for this local maximum. If the nearest ridge point is also a local maximum,

we have found the connected local maximum, and we calculate the difference P

in t values, and the difference L in x values.

These lists of P and L values for different µ values are then plotted. As the

procedure described above is automatically implemented, the results are not as

clear as they might be; owing to numerical fluctuations it is often the case that

we have two local maxima apparently two time steps apart. Also, for long period

recurrences we may well have a small local maximum between two large local

maxima, leading to a smaller value of P than we would expect.

Regardless of these limitations, the data obtained is instructive. The orbit dia-

gram of µ versus P is plotted in Figure 6.8 (whose grid-like structure is a symptom

of the fixed timestep, and which has closer µ steps near to zero). This diagram

clearly reveals decay in P with µ away from µ+ µ0 = 0.

Examination of the bifurcation structure of µ versus L reveals Figure 6.9, which

has much less clear structure. We also note here that in terms of the criterion
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Figure 6.7 Local Maxima of Crank-Nicolson integration of the Ginzburg-Landau

equation (6.1) with α = 1, β = i, γ = 1+10i and zero boundary conditions. Dots

indicate local maxima in the x-direction, crosses indicate local maxima in both

the x and t directions.
Chapter 6: The Ginzburg-Landau Equation
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Figure 6.8 µ-P orbit diagram for Ginzburg-Landau system. A finer µ step was

used near µ = 0.
Chapter 6: The Ginzburg-Landau Equation
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Figure 6.9 µ-L orbit diagram for Ginzburg-Landau system. A finer µ step was

used near µ = 0.
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(5.35), we have a quadratic dispersion relation, giving d = 2, the spatial domain

size is L = 20 and that the observed P and P ′ values are in the range [0, 10].

Hence we see that

P ≪ Ld, (6.9)

so that we should expect to see behaviour governed by the infinite domain case

finite-dimensional map (6.8).

6.3 Parameter Fitting

We use the numerical results of the previous section to return to the problem

previously deferred, that of finding values for the coefficients cj1, cj2 and Dj

for j = 1, 2, 3 and µ0. We construct a list of observed results in the form

(µ, P ;P ′, L,∆), using the methods of the previous section, which we then use

to fit the model (6.8).

The fitting method used is an adapted Levenberg-Marquardt method, based

around that described in Press et al [1992] §15.5. Complications are intro-

duced, however, because here we are trying to fit a function f : R2 → R

3 from

(µ, P ) 7→ (P ′, L,∆) that is defined implicitly by the finite-dimensional map equa-

tions (6.8) for j = 1, 2, 3, and which depends on the unknown coefficients as

parameters.

We write x = (µ, P ) and y = (P ′, L,∆), so that our list of observed values is

(xi,yi) for i = 1, . . . , N . We define a χ2 merit function by

χ2(a) =
N∑

i=1

‖yi − f(xi;a)‖
2

(6.10)
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where

a = (c11, c21, c31, c12, c22, c32, D1, D2, D3, µ0) ∈ R
M ,

with M = 19, since we consider parameters in C as being in R

2. Our aim is to

minimize the function χ2(a) over a. If we are at parameter values acur that are

close to a minimum, we expect to be able to approximate χ2(a) in a quadratic

form:

χ2(acur + a) ≈ γ − d.a+
1

2
a.D.a, (6.11)

where γ = χ2(acur), −d is the M -dimensional gradient vector at acur, and D

is the M ×M Hessian matrix at acur. If this is an accurate approximation, we

can jump straight to the minimizing value amin of a by using the inverse of the

Hessian matrix:

amin = acur +D−1.
[
−∇χ2(acur)

]
. (6.12)

On the other hand, if (6.11) is a poor approximation, we may take steepest descent

steps of the form:

anext = acur − constant×∇χ2(acur). (6.13)

In either case, we need first to calculate the gradient d and Hessian matrix D of

χ2(a). From (6.10), we see that the gradient vector is

∂χ2

∂ak
= −2

N∑

i=1

(yi − f(xi;a)).
∂f

∂ak
(xi;a) (6.14)

and the Hessian matrix is

∂2χ2

∂ak∂al
= 2

N∑

i=1

[
∂f

∂ak
(xi;a).

∂f

∂al
(xi;a)− (yi − f(xi;a)).

∂2f

∂ak∂al
(xi;a)

]
. (6.15)

Under the assumption that the model is accurate, the second of the terms in this

sum, that involving the second derivative of f , may be ignored, and we will use

the approximation

∂2χ2

∂ak∂al
= 2

N∑

i=1

[
∂f

∂ak
(xi;a).

∂f

∂al
(xi;a)

]
. (6.16)
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Thus, in order to calculate the gradient and Hessian of the χ2 function, we must

first calculate ∂f/∂ak for k = 1, . . . ,M . Since f is only defined implicitly, by

equations (6.8), this involves the solution of more implicit equations. Writing

(6.8) as

g(x,y;a) = 0

and setting y = f(x;a) we see that the relevant equations are

∂g

∂ak
+

(
Dg

Dy

)
.
∂f

∂ak
= 0,

and are linear in ∂f/∂ak, so that we have

∂f

∂ak
= −

(
Dg

Dy

)−1

.
∂g

∂ak
.

The Levenberg-Marquardt method combines the inverse Hessian method (6.12)

together with the steepest descent method (6.13). To do this, we write

αjj =
1 + λ

2

∂χ2

∂a2j

αjk =
1

2

∂χ2

∂ak∂aj
(j 6= k)

and then solve the system

M∑

l=1

αkl∆al =
−1

2

∂χ2

∂ak

for k = 1, . . . ,M . When λ is large, the diagonal terms of the matrix [α] are

dominant, and we are solving

∆al = constant×
∂χ2

∂ak
,

which is just the steepest descent method (6.13). On the other hand, when λ is

small, we are solving
M∑

l=1

∂2χ2

∂ak∂al
∆al =

−∂χ2

∂ak
,
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which is the inverse Hessian method (6.12).

The choice of the parameter λ is then controlled as follows. At each iteration,

we examine whether the proposed step ∆a in parameters causes an increase or a

decrease in the merit function χ2. If it causes an increase, so that χ2(a+∆a) �

χ2(a), then we increase λ by some factor (say 10), in order to favour the steepest

descent method more, and try again. If the step in parameter space causes

an improvement in the merit function, that is χ2(a + ∆a) � χ2(a), then we

reduce λ by the same factor, and moreover take the step in parameter space

a← a+∆a. The iteration is terminated when a step is taken that only reduces

χ2 by a negligible amount.

These techniques for parameter fitting were applied to a set of N=16,560 points

(µ, P ;P ′, L,∆), obtained as described in the previous section. Because of the

large dimension of the parameter space to be searched, several hundred different

sets of random starting values were used in the parameter fitting. As the best fit

obtained, this yielded the parameter values:

c11 = −2.53− 7.56i

c21 = −1.90 + 3.02i

c31 = −4.31− 10.66i

c12 = −8.61− 7.59i

c22 = −4.44− 8.54i

c32 = −1.58− 8.08i

D1 = −10.49− 9.29i

D2 = −7.26− 8.86i

D3 = −4.63− 4.90i

(6.17)

with µ0 = 0.0771459, which we use from now on.

The underlying assumption of this chapter is that the Ginzburg-Landau system

(6.5) has a homoclinic orbit at µ = 0. Now that we have determined a value for

µ0, we can attempt to obtain a rough approximation to such an orbit. In order

to do this, we perform an integration starting from initial data of low amplitude

noise. This initial data will then grow in magnitude in the directions appropriate

to the unstable eigenspace, and map out an orbit close to the homoclinic orbit as
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Figure 6.10 Numerical integration of the Ginzburg-Landau equation (6.5) with

µ + µ0 = µ0 from (6.17) and with zero boundary conditions, using a Crank-

Nicolson integration method. This integration should be close to the underlying

homoclinic orbit.
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Figure 6.11 Closer examination of the previous diagram.

depicted in Figure 6.10 and Figure 6.11; the maximum value of |A(x, t)| at each

timestep is shown in Figure 6.12. This is clearly an ad hoc method, but may yield

some indication of the possible shape of the homoclinic orbit.

6.4 Finite-Dimensional Map Results

Now that we have a set of feasible parameter values, we can now examine the

theoretical bifurcation structure of the finite-dimensional map (6.8):

cj1e
iµ0P

′

ei(L−∆)

P ′
+
cj2e

iµ0P
′

e−i(L+∆)

P ′
=
Dje

−iµ0P

P
+ µ.

This will not generally have fixed points with P ′ = P , L = ∆ = 0, but it may have

fixed points with P ′ = P , L 6= 0, ∆ 6= 0 corresponding to modulated travelling
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Figure 6.12 Plot of the maximum value of |A(x, t)| for each timestep, from the

preceding two diagrams.

waves, which will have µ ∼ P−1 as P → ∞. Thus we seek solutions (µ;P,L,∆)

of

cj1e
iµ0P ei(L−∆) + cj2e

iµ0P e−i(L+∆) = Dje
−iµ0P + µP (6.18)

for j = 1, 2, 3.

We have numerically investigated the existence of these fixed points, using the

bifurcation-following techniques and software described in Doedel [1986], and in

Chapter 4. In this case, we are no longer investigating the fixed points of a one-

dimensional map P 7→ P ′, but instead searching for solutions with P = P ′ of

a map P 7→ (P ′, L,∆). This map is defined implicitly by the three equations

(6.8); the continuation equations equivalent to equations (4.30) then give a four-

dimensional root finding problem, which we again solve with a globally convergent

Newton’s method.

This investigation yields bifurcation diagrams as depicted in Figure 6.13 and
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Figure 6.13 µ-P bifurcation diagram for Ginzburg-Landau system (6.18), where

colour indicates the value of L, and where crosses indicate Hopf bifurcation points.

Figure 6.15. In Figure 6.13, we show the µ-P bifurcation diagram, with colour

being used to indicate the value of L. We note from (6.18) that L is only defined

modulo 2π, hence we use colour as an angular variable. This diagram has an

interesting sequence of overlapping isolas extending up the µ = 0 axis, together

with the lowest branch which sweeps out to higher µ values. These structures are

similar to a combination of two of the bifurcation structures shown in Chapter 4,

those in Figure 4.8 and Figure 4.9. However, in practice only behaviour near
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to the bifurcation branch with lowest P values will be observed, as evinced by

comparison of this branch with the numerical integration data shown in Figure

6.8. This lowest branch is more closely examined in Figure 6.14.

0 1 2 3 4
0

2

4

6

8

µ

P
er

io
d 

P

Figure 6.14 Closer examination of the lowest branch of the bifurcation diagram,

for comparison with Figure 6.8.

When we plot the µ-P -L bifurcation diagram in Figure 6.15, we see that these

isolas are interlocking and do not intersect, forming a chain up the µ = 0 axis.

Thus, in contrast to the cases studied in Chapter 4, the L component is not

just a function of P but is of vital importance in understanding the shape of the

bifurcation diagram. We also include on Figure 6.15 an indication of the value of

∆ at each point on a branch, given by the colour. Again, by examining (6.18), we

see that ∆ is only defined modulo 2π, and we use colour as an angular variable.

On both Figure 6.13 and Figure 6.15, the crosses indicate Hopf bifurcation points,
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Figure 6.15 µ-P -L bifurcation diagram for Ginzburg-Landau system (6.18),

where the colour indicates the phase of ∆. Crosses indicate Hopf bifurcation

points.
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where a complex conjugate pair of eigenvalues of the Jacobian of (6.18) cross the

imaginary axis, yielding an invariant circle in (P,L,∆) space (see Wiggins [1988]

§3.2C, where such bifurcations are referred to as Naimark-Sacker bifurcations).

To see how the fixed points of the map arise, we may produce, for each fixed

µ, a picture of the map P 7→ P ′ induced by (6.8). This is created numerically,

and yields maps as shown in Figure 6.16 for a range of parameter values. The

alternative values of P ′ on the map correspond to different L values.

0 100 200
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P

P’
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P
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Figure 6.16 Numerically calculated map P 7→ P ′ induced by the finite-

dimensional map (6.8) at various µ values. Where appropriate, the line P ′ = P

is also marked.
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6.5 Summary

In this chapter we have tried to apply the theoretical results of Chapter 3 to

a specific example, the complex Ginzburg-Landau equation. We have used a

particular parameterization of the one-dimensional Ginzburg-Landau equation,

taken from Bretherton & Spiegel [1983], that gives numerical results displaying

spatio-temporal chaos in a manner consistent with the hypothesis of an underlying

homoclinic orbit.

In the first section, we produced the finite-dimensional map for the system with

the methods described in Chapter 4. However, this map (equation (6.8)) had

a number of undetermined coefficients. In Chapter 4 we saw that the values of

coefficients in such finite-dimensional maps can have a significant effect on the

bifurcation diagrams produced, so we deferred further investigation of the map

until some suitable values for these coefficients could be found.

In the second section, we presented some numerical results obtained from inte-

grations of the system, together with a description of the method used to convert

such integration data into recurrence coordinates (µ, P ;P ′, L,∆) appropriate to

the finite-dimensional map.

The third section described the method used to fit the unknown coefficients of the

finite-dimensional map, using the numerical data obtained in the previous section.

We used a standard nonlinear model fitting method, the Levenberg-Marquardt

method. However, this did involve some numerical complications due to the form

of the map (6.8) being fitted and the number of parameters being fitted.

Chapter 6: The Ginzburg-Landau Equation



D.M.Drysdale Homoclinic Bifurcations 136

Finally, the fourth section used the coefficient values obtained in the third section

together with the finite-dimensional map (6.8) from the first section to obtain a

bifurcation diagram. This diagram showed correspondence with the numerical

recurrence data, and moreover displayed an interesting chain of interlocking isolas,

extending up the P axis.
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7 Conclusions

In the present work, we have studied homoclinic bifurcations, one of the most

important global bifurcation phenomena occurring in parameterized dynamical

systems. There are standard techniques for analysing homoclinic bifurcations

in specific low-dimensional and general n-dimensional ordinary differential equa-

tions. The main thrust of this work has been the formal extension of these

techniques to a class of partial differential equations, with special attention paid

to symmetry considerations.

The standard method of attack for homoclinic systems in ordinary differential

equations is the creation of a Poincaré return map. To create this map, we

consider two Poincaré surfaces close to the homoclinic point. We create an inside

map between the two surfaces, which is governed by the behaviour of the equations

linearized at the homoclinic point. We also create an outside map, where we

assume that we are close enough to the homoclinic orbit (in both phase space

and parameter space) to linearize about the homoclinic orbit, giving an affine

map. The composition of these two maps gives a Poincaré return map on one of

the two Poincaré surfaces.

Having obtained this return map, we can examine its behaviour. In the specific

low-dimensional cases previously studied this behaviour has been comprehensively

analysed, to give a full bifurcation structure together with information about the

existence of horseshoes, subsidiary homoclinic orbits, secondary bifurcations and

so on. The essentials of this material were summarized in Chapter 1.

In the case of general n-dimensional ODEs, as studied in Chapter 2, such detail is

beyond us. However, we deduced the primary bifurcation structure by reducing
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the return map to a one-dimensional map, using approximations suggested by

the geometry of the system. This one-dimensional map involved the return time

between successive visits to the Poincaré surface, and from it we deduced the

shape of the bifurcation curve of the principal periodic orbit.

These techniques were extended to a suitable class of partial differential equa-

tions in Chapter 3, by considering these PDEs as evolution equations in a suit-

able function space, and then extending the concepts of Poincaré maps to these

spaces. This extension involved considerably more technicalities, including those

concerning the effects of symmetries.

Upon considering this class of partial differential equations, we discovered that

the symmetries of the equations play a much more important rôle than in or-

dinary differential equations. In ordinary differential equations, a continuous

one-parameter group of symmetries will in general reduce the order of the equa-

tion by one. Thus, only specific cases of discrete symmetries can be considered

(and in fact, few symmetries other than representations of Z2 have been studied).

However, in our given class of partial differential equations, we have two one-

parameter symmetry groups, namely time and space translation invariance, and

we may well have more (notably phase shift invariance, in the case of complex

valued equations such as the Ginzburg-Landau equation). Thus, any homoclinic

orbit is non-unique in this case—a symmetry translation of the homoclinic orbit

is still an orbit and is still homoclinic. This had important consequences for the

construction of the Poincaré return map.

For the inside map, in the region where we assume the flow is governed by the

equations linearized about the homoclinic point, these symmetries have no effect.
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However, for the outside map, we produced an approximation under the assump-

tion that points start, and remain, close to the homoclinic orbit. Since we have

a family of symmetry-transform related homoclinic orbits, to be returned to the

Poincaré surface, a point need only start near to any one of this family, not just

the specific instance of the homoclinic orbit we have chosen.

In fact, we inverted this—instead of thinking of our starting point for the outside

map as being close to a symmetry transform of the specific homoclinic orbit,

we considered a symmetry transform of our starting point to be close to the

homoclinic orbit. Thus, our full Poincaré map involved not only the return time

between successive visits to the Poincaré surface, but also the symmetry transform

parameters needed to move orbits to be close to our specific homoclinic orbit.

In Chapter 4, we then approximated this Poincaré map by a finite-dimensional

map, in an analogous manner to the reduction to a one-dimensional map in

the ordinary differential equation case. This finite-dimensional map involved the

return time between visits to the Poincaré surface, together with the symmetry

transform parameters. The time translation invariance of the system occupied

a special place, essentially corresponding to the return time, so that overall we

had a finite-dimensional map whose dimension corresponded to the number of

one-parameter continuous symmetry groups that the equation is invariant under.

Two of the simplest examples of this finite-dimensional map were also considered,

yielding a remarkable range and complexity of results.

The most important feature of the map produced for partial differential equa-

tions is the algebraic decay in the period as the parameter moves away from its

homoclinic value, as opposed to the exponential decay encountered for ordinary
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differential equations. If we think of the behaviour in the ODE case as being gov-

erned by the least unstable eigenvalue of the linearization at the origin, we see an

indication of why, in the continuous spectrum case, this behaviour is altered. An

example providing clear confirmation of this result would provide strong support

for the results of Chapter 3

In addition to the infinite domain partial differential equations studied in Chap-

ter 3, we also considered the finite domain case in Chapter 5. Here, we assumed

the existence of a countable, complete set of orthonormal eigenfunctions of the

system linearized about the homoclinic point. As such the analysis of the system

became similar to the analysis of general n-dimensional systems of ordinary differ-

ential equations in Chapter 2, but here dealing with countably infinite matrices.

However, in this case, the effect of continuous symmetry groups could legitimately

be considered, giving a finite-dimensional map with considerable structural sim-

ilarity to that produced in the infinite domain case.

The boundary between the two cases, finite and infinite domain, was also briefly

explored. We sought and found a practical criterion for distinguishing when each

case would be applicable in an approximation of an infinite domain system. This

criterion is invaluable for the consideration of any numerical simulation of an

infinite domain system, which must necessarily be finite.

Chapter 6 then attempted to apply these results to the Ginzburg-Landau equa-

tion. This equation is a canonical example of a nonlinear partial differential

equation displaying spatio-temporally chaotic behaviour. Although no homo-

clinic orbit could be found explicitly, numerical integrations of the system display

behaviour that we would expect of such systems.
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As demonstrated in Chapter 4, the specific values of coefficients in the finite-

dimensional map may significantly alter the bifurcation structure. Hence the

first procedure to be performed on data taken from numerical integrations of the

Ginzburg-Landau equation was that of fitting these coefficients. This involved

an algorithm for reducing the full integration data to recurrence coordinates,

followed by an adapted Levenberg-Marquardt method to fit the coefficients. This

numerical data was also plotted in Figure 6.8, for later comparison with the

bifurcation diagram.

Having obtained the necessary coefficients for the finite-dimensional map, we then

produced a bifurcation diagram for the map. The bifurcation diagram introduced

an interesting chain of interlocking isolas, that required full use of µ-P -L bifurca-

tion space to unravel the loops. This was in contrast to the examples in Chapter 4,

where L was fully determined as a function of P .

In addition to this chain of isolas, the bifurcation diagram also had a branch

sweeping out to higher µ values. This branch had lower P values, and corre-

sponded to the previously obtained numerical data.

Homoclinic bifurcations are an organizing centre in chaotic ordinary differential

equations. The present work involved the creation of analogous results for partial

differential equations. This has involved considerably more technical problems

than in the ODE case. The results thus obtained, although themselves difficult to

apply, have shown a great variety of bifurcation behaviours in even simple cases.

When applied to the Ginzburg-Landau equation, these methods have yielded

results which correlate with numerics, and which give a possible indication of the

underlying reasons for the complexity of spatio-temporal behaviour observed.
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Arnéodo A., P.Coullet, E.Spiegel & C.Tresser [1985], “Asymptotic chaos”, Phys-

ica 14D, 327–347

Bedford T. & J.Swift [1988], “New directions in dynamical systems”, LMS lecture

notes 127, C.U.P.

Bender C.M. & S.A.Orszag [1978], “Advanced mathematical methods for scien-

tists and engineers”, McGraw-Hill

Blázquez C.M. [1986], “Bifurcation from a homoclinic orbit in parabolic differen-

tial equations”, Proc. Roy. Soc. Edinburgh 103A, 265–274

Bretherton C.S. & E.A.Spiegel [1983], “Intermittency through modulational in-

stability”, Phys. Lett. 96A, 152–156

Carrier G.F., M.Krook & C.E.Pearson [1966], “Functions of a Complex Variable”,

McGraw-Hill

Chow S.N. & B.Deng [1989], “Bifurcation of a unique stable periodic orbit from

a homoclinic orbit in infinite-dimensional systems”, Trans. Am. Math. Soc.

312, 539–587

Bibliography



D.M.Drysdale Homoclinic Bifurcations 143

Coddington E.A. & N.Levinson [1955], “Theory of Ordinary Differential Equa-

tions”, McGraw-Hill

Deng B. [1989], “The Shil’nikov Problem, Exponential Expansion, Strong λ-

Lemma, C1-Linearization, and Homoclinic Bifurcation”, J. Diff. Eqns. 79,

189–231

Devaney R.L. [1989], “An Introduction to Chaotic Dynamical Systems, 2nd edi-

tion”, Addison-Wesley

Doedel E. [1986], “AUTO: Software for Continuation and Bifurcation Problems in

Ordinary Differential Equations”, Applied Mathematics, California Institute

of Technology

Doering C.R, J.D.Gibbon, D.D.Holm & B.Nicolaenko [1988], “Low-dimensional

behaviour in the complex Ginzburg-Landau equation”, Nonlinearity 1, 279–

309

Feigenbaum M.J. [1978], “Quantitative universality for a class of nonlinear trans-

formations”, J. Stat. Phys. 19, 25

Feigenbaum M.J. [1979], “The universal metric properties of nonlinear transfor-

mations”, J. Stat. Phys. 21, 669

Feigenbaum M.J. [1980], “Universal Behaviour in Nonlinear Systems”, Los

Alamos Science 1, 4–27

Fowler A.C. [1990a], “Homoclinic bifurcations in n dimensions”, Studies in Ap-

plied Math. 83, 193–209

Bibliography



D.M.Drysdale Homoclinic Bifurcations 144

Fowler A.C. [1990b], “Homoclinic bifurcations for partial differential equations in

unbounded domains”, Studies in Applied Math. 83, 329–353

Fowler A.C. & C.Sparrow [1991], “Bifocal homoclinic orbits in four dimensions”,

Nonlinearity 4, 1159–1182

Gaspard P. & G.Nicolis [1983], “What can we learn from homoclinic orbits in

chaotic dynamics?”, J. Stat. Phys. 31, 499–518

Gaspard P. [1984a], “Generation of a countable set of homoclinic flows through

bifurcation”, Phys. Lett. 97A, 1–4

Gaspard P. [1984b], “Generation of a countable set of homoclinic flows through

bifurcation in multidimensional systems”, Bull. Class. Sci. Acad. Roy. Belg.

Serie 5 LXX, 61–83

Gaspard P., R.Kapral & G.Nicolis [1984], “Bifurcation phenomena near homo-

clinic systems : a two-parameter analysis”, J. Stat. Phys. 35, 697–727

Glendinning P. [1984], “Bifurcations near homoclinic orbits with symmetry”,

Phys. Lett. 103A, 163–166

Glendinning P. [1988], “Global bifurcations in flows”, in Bedford & Swift [1988],

120–149

Glendinning P. [1989], “Subsidiary bifurcations near bifocal homoclinic orbits”,

Math. Proc. Camb. Phil. Soc. 105, 597–605

Glendinning P. & C. Sparrow [1984], “Local and global behaviour near homoclinic

orbits”, J. Stat. Phys. 35, 645–696

Bibliography



D.M.Drysdale Homoclinic Bifurcations 145

Gottlieb D. & S.P.Orszag [1977], “Numerical analysis of spectral methods : theory

and applications”, SIAM

Guckenheimer J. & P.J.Holmes [1983], “Nonlinear oscillations, dynamical systems

and bifurcations of vector fields”, Springer-Verlag

Hartman P. [1982], “Ordinary differential equations, 2nd edition”, Birkhäuser,
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