302 NONDETERMINISM

Figure 22.11: A directed graph with a loop.

representing the search of the remaining cities.
If we find a box with a coin in it, we call cut, which sets *paths#* back to the

value it had at the time of the mark. The effects of the cut are not visible until the

next call to fail. But when it comes, after the display, the next fail sends the
search all the way up to the topmost chaose, even if there would otherwise have
‘been live choice-points lower in the search tree. The upshot is, as soon as we find
a box with a coin in it, we resume the search at the next city:

> {find-boxes)
(LA 1 1)(LA 1 20C

{NY 1 1)C
(BOS 1 1)(BOS 1 2)(BOS 2 1)(BOS 2 2)C
o ;

In this case, we open seven boxes instead of twelve.

22.6 True Nondeterminism

A deterministic graph-searching program would have tc take explicit steps to
avoid getting caught in a circular path. Figure 22.11 shows a directed graph
containing a loop. A program searching for a path from node a to node e risks
getting caught in the circular path (a, b, ¢). Unless a deterministic searcher used
randomization, breadth-first search, or checked explicitly for circular paths, the
search might never terminate. The implementation of path shown in Figure 22.12
avoids circular paths by searching breadth-first.

In principie, nondeterminism should save us the trouble of even considering
circular paths. The depth-first implementation of choose and fail given in Sec-
tion 22.3 is vulnerable to the problem of circular paths, but if we were being

ililers iii B vt datamminictin nhiancs ta he ahle 0 eelect an ohiect

L

226

TRUE NONDETERMINISM 303

(define (path nodel node2)
(bf-path node2 (list (list nodel))))

(define (bf-path dest queus)
(if (null? gqueue)
]
(let* ((path (car queue))
(node (car path)))
(if (eq? node dest)
(cdr (reverse path))
(bf-path dest
(append (cdr quene)
(map (lambda (n)
(cons n path))
(neighbors node))))))))

Figure 22.12: Deterministic search,

|

(define (path nodel node2)
(cond ((rull? (neighbors nodel)) (fail))
((memq node2 (neighbors nodel)} (list node2))
(else (let ((n (true-choose (neighbors node1))))
(cons n (path n node2))))))

Figure 22.13: Nondeterministic search.

which meets any computable specification, and this
correct choose, we should be able to write the
shown in Figure 22.13,

. This section .s.hows how to implement versions choose and fail which are
e even from circular paths. Figure 22.14 contains a Scheme implementation

o’fl true nondetf:rministic choose and fail. Programs which use these versions of
¢hoose and fail should find solutions whenever the equivalent nondeterministic

case is no exception. Using a
shorter and clearer version of path

. dlgorithms would, subject to hardware limitations.

' The Tmplementation of true-choose defined in Figure 22.14 works by treat
mg-the list of stored paths as a queue. Programs using true—choose will);ea:a};
thefr state-space breadth-first. When the program reaches a choice-point com'C

uations to follow each choice are appended to the end of the list of smn:d nm::-

WERTEeD

fin St eas i




